[1] Hai B,Shukla A K,Duncan H,et al.The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials[J].Journal of Materials Chemistry A,2013,1(3):759-769.
[2] Guan D,Wang Y.Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries[J].Ionics,2013,19:1-8.
[3] Cheng F,Wang H,Zhu Z,et al.Porous LiMn2O4nanorods with durable high-rate capability for rechargeable Li-ion batteries[J].Energy & Environmental Science,2011,4(9):3668-3675.
[4] Liang X,Zeng S,Liu Y,et al.Enhance cycling performance of LiMn2O4 cathode by Sr2+ and Cr3+doping[J].Materials Science & Technology,2015,31(4):443-447.
[5] 李燕,卢瑶,郭俊明,等.镧改性尖晶石LiMn2O4正极材料的研究进展[J].电池,2020,50(1):81-85.
[6] 董月芬,陈玉峰.锂离子电池正极材料锰酸锂掺杂改性研究进展[J].无机盐工业,2018,50(6):23-27.
[7] 纪志永,黄智辉,袁俊生,等.基于离子交换机理的尖晶石型LiMn2O4脱/嵌锂模拟[J].材料导报,2017,31(12):131-135.
[8] Aiswarya B,Daria M,Nilüfer K Y,et al.3d-Transition metal doped spinels as high-voltage cathode materials for rechargeable lithium-ion batteries[J].Progress in Solid State Chemistry,2014,42(4):128-148.
[9] Fang D L,Li J C,Liu X,et al.Synthesis of a Co-Ni doped LiMn2O4,spinel cat hodematerial for high-power Li-ion batteries by a sol-gel mediated solid-state route[J].Journal of Alloys & Compounds,2015,640:82-89.
[10] Jiang H,Fu Y,Hu Y,et al.Hollow LiMn2O4 nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances[J].Small,2014,10,1096-1100.
[11] Huang S,Wu H,Chen P,et al.Facile pH mediated synthesis of morphology tunable MnCO3 and their transformation to truncated octahedral spinel LiMn2O4 cathode materials for superior lithium storage[J].Journal of Materials Chemistry A,2015 3(7):3633-3640.
[12] Han C G,Zhu C Y,Saito G,et al.Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries[J].Electrochim.Acta2016,209:225-234.
[13] 陈锐芳,撒召遥,苏长伟,等.尖晶石LiMn2O4正极材料的研究进展[J].电池,2020,50(5):496-500.
[14] Hirayama M,Ido H,Kim K,et al.Dynamic structural changes at LiMn2O4 /electrolyte interface during lithium battery reaction[J].Journal of the American Chemical Society,2010,132(43):15268-15276.
[15] Chen B,Ben L,Yu H,et al.Understanding surface structural stabilization of the high-temperature and high-voltage cycling performance of Al3+-modified LiMn2O4cathode material[J].ACS Applied Materials & Interfaces,2018,10(1):1-28.
[16] Deng B H,Nakamura H,Yoshio M.Improved cycle ability of oxygen stoichiometric Li1+xMgyMn2-x-yO4+ at elevated temperature[J].Chemistry Letters,2003,32(10):942-943.
[17] Xu G J,Liu Z H,Zhang C J,Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures[J].Journal of Materials Chemistry A,2015,3(8):4092-4123.
[18] Xia Y Y,Sakai T,Takuya F,et al.Correlating capacity fading and structural changes in Li1+yMn2-yO4-δ Spinel cathode materials:A systematic Study on the effects of Li/Mn ratio and oxygen deficiency[J].Journal of the Electrochemical Society,2001,148(7):723-729.
[19] 王海权,胡志强,于洋,等.尖晶石型锰酸锂的复合掺杂改性[J].大连工业大学学报,2014,33(5):364-367.
[20] Sun F.Effect of Na-substitution on the electrode properties of LiMn2O4[J].Journal of Alloys and Compounds,2014,584:538-541.
[21] Li X L.Ionothermal synthesis and enhanced electrochemical performance of nanostructure Cr-doped LiMn2O4 for lithium-ion batteries[J].Ionics,2015,21(6):1517-1523.
[22] Zhang H,Xu Y,Liu D,et al.Structure and performance of dual doped LiMn2O4 cathode materials prepared via microwave synthesis method[J].Electrochimica Acta,2014,125:225-231.
[23] Zhang H L.Carbon-encapsulated LiMn2O4 spheres prepared using a polymer microgel reactor for high-power lithium-ion batteries[J].Journal of Power Sources,2016,301:376-385.
[24] Wang C M.The effect of LaMnO3 with high electronic conductivity on the high rate charge-discharge performance of LiMn2O4[J].Journal of Electroanalytical Chemistry,2016,775:306-310.
[25] 王姝瑛,雷新荣.尖晶石型LiMn2O4的制备与掺杂改性研究进展[J].佛山陶瓷,2008(7):33-37.
[26] 段玉珍,刘晓芳,冯涛,等.Ni掺杂层状LiMnO2的改性研究进展[J].化工新型材料,2018,46(12):36-41.
[27] Yu Y,Xiang M,Guo J,et al.Enhancing high-rate and elevated-temperature properties of Ni-Mg co-doped LiMn2O4 cathodes for Li-ion batteries[J].Journal of Colloid and Interface Science,2019,555:64-71.
[28] 唐致远,邓艳波,张娜.锂离子电池正极材料尖晶石型LiMn2O4的掺杂改性研究[J].材料导报,2006(S1):281-284.
[29] 曾雷英.硅掺杂对LiMn2O4锂离子正极材料的电化学性能影响[J].福建冶金,2018,47(4):49-51.
[30] 王凤,戴永年,崔萌佳,姚耀春.掺杂对尖晶石锰酸锂正极材料的影响[J].无机盐工业,2005,37(1):4-6.
[31] 贺周初,庄新娟,彭爱国.锂离子电池正极材料尖晶石型锰酸锂的研究进展[J].精细化工中间体,2010,40(1):7-11.
[32] Zhao H Y,Liu S S,Wang Z,et al.LiSixMn2-xO4(x≤0.10) cathode materials with improved electrochemical properties prepared via a simple solid-state method for high-performance lithium-ion batteries[J].Ceramics International,2016,42(12):134-428.
[33] Zhao H Y,Li D D,Wang Y S,et al.Sol-gel synthesis of silicon-doped lithium manganese oxide with enhanced reversible capacity and cycling stability[J].Materials,2018,11(8):1445.
[34] Wang M,Yang M,Zhao X Y,et al.Spinel LiMn2-xSixO4(x<1) through Si4+ substitution as a potential cathode material for lithium-ion batteries[J].Science China Materials,2016,59(7):558-566.
[35] Nageswaran S,Keppeler M,Kim S J,et al.Morphology controlled Si-modified LiNi0.5Mn1.5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries[J].Journal of Power Sources,2017,346,89-96.
[36] Shu X H,Zhao H Y,Hu Y Z,et al.Magnesium and silicon co-doped LiNi0.5Mn1.5O4 cathode material with outstanding cycling stability for lithium-ion batteries[J].Vacuum,2018,156:1-8.
[37] Zhao H Y,Li F,Liu X Q,et al.Effects of equimolar Mg(Ⅱ) and Si(Ⅳ) co-doping on the electrochemical properties of spinel LiMn2-2xMgxSixO4 prepared by citric acid assisted sol-gel method.Electrochemical,magnetic and ESR study[J].Electrochimica Acta,2015,151:263-269.
[38] Zhao H Y,Liu S S,Cai Y,et al.A simple and mass production preferred solid-state procedure to prepare the LiSixMgxMn2-2xO4(0≤x≤0.10) with enhanced cycling stability and rate capability[J].Journal of Alloys and Compounds,2016,671:304-311.
[39] Zhao H Y,Liu X Q,Cheng C,et al.Synthesis andelectrochemical characterizations of spinel LiMn1.94MO4(M = Mn0.06,Mg0.06,Si0.06,(Mg0.03Si0.03) compounds as cathode materials for lithium-ion batteries[J].Journal of Power Sources,2015,282:118-128.
[40] Zhao H Y,Liu X Q,Cai C,et al.Improved electrochemical performance of spinel-type LiMn1.90Mg0.05Si0.05O4 cathode materials synthesized by a citric acid-assisted sol-gel method[J].Journal of Solid State Electrochemistry,2014,19(4):1015-1026.
[41] Iturrondobeitia A,Goñi A,Palomares V,et al.Effect of doping LiMn2O4 spinel with a tetravalent species such as Si(Ⅳ) versus with a trivalent species such as Ga(Ⅲ).Electrochemical,magnetic and ESR study[J].Journal of Power Sources,2012,216482-488.
[42] 方俊杰,李莹,宋永慧,等。Al和Si等量共掺杂对LiMn2O4材料的电化学性能影响[J].电源技术,2018,42(10):1441-1443.
[43] Zhao H Y,Li F,Bai X Z,et al.Enhanced Cycling Stability of LiCuxMn1.95-xSi0.05O4 Cathode Material Obtained by Solid-State Method[J].Materials,2018,11(8):1302.
[44] Zhao H Y,Liu S S,Tan M,et al.Enhanced cycling stability of multi-cations doped spinel lithium manganese oxide for rechargeable lithium batteries[J].Stockholm University Library Authenticated,2019,29(5):566-571.