[1] Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-38.
[2] Zhang H,Chen G,Bahnemann D W.Photoelectrocatalytic materials for envi-ronmental applications[J].J Mater Chem,2009,19:5089-5121.
[3] Liao P,Carter E A.New concepts and modeling strategies to design and eval-uate photo-electro-catalysts based on transition metal oxides[J].Chem Soc Rev,2013,42:2401-2422.
[4] Geim A K,Novoselov K S.The rise of graphene[J].Nat Mater,2007,6:183-191.
[5] Chan H K,Siberio Perez D Y,Kim J.A route to high surface area,porosity and inclusion of large molecules in crystals[J].Nature,2004,427:523-527.
[6] Sclladler L S,Gammris S C,Ajayan J P M.Load transfer in carbon nanotube epoxy composites[J].Appl Phys Lett,1998,73:3842-3847.
[7] Wang P F,Ao Y H,Wang C,et al.Enhanced photoelectrocatalytic activity for dye degradation by graphene-titania composite film electrodes[J].J Hazard Mater,2012,223-224:79-83.
[8] Xie G C,Zhang K,Fang H,et al.A photoelectrochemical investigation on the synergetic effect between CdS and reduced graphene oxide for solar-energy conversion[J].Chem Asian J,2013,8:2395-2400.
[9] Zhai C Y,Zhu M S,Ren F F,et al.Enhanced photoelectrocatalytic performance of titaniumdioxide/carbon cloth based photoelectrodes by graphenemodification under visible-light irradiation[J].J Hazard Mater,2013,263:291-298.
[10] Zhai C Y,Zhu M S,Lu Y T,et al.Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation[J].Phys Chem Chem Phys,2014,16:14800-14807.
[11] Yang L X,Lia Z Y,Jiang H M,et al.Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO2/graphene/Cu2O[J].Appl Catal B:Environ,2016,183:75-85.
[12] Wang X D,Xie J L,Li C M.Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light[J].J Mater Chem A,2015,3:1235-1242.
[13] Dubale A A,Su W N,Gedamu T A,et al.The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting[J].J Mater Chem A,2014,2:18383-18397.
[14] Kang Z,Guy S,Yanx Q,et al.Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application[J].Biosens Bioelectron,2015,64:499-504.
[15] Hou Y,Zuo F,Dagg A,et al.Visible light-driven α-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting[J].Nano Lett,2012,12:64646473.
[16] Wu H Y,Xu M,Da P M,et al.WO3-reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion[J].Phys Chem Chem Phys,2013,15:16138-16142.
[17] Wang H,Liang Y H,Liu L,et al.Enriched photoelectrocatalytic degradation and photoelectric performance of BiOI photoelectrode by coupling rGO[J].Appl Catal B:Environ,2017,208:22-34.
[18] Lee J S,You K H,Park C B.Highly Photoactive,Low bandgap TiO2 nanoparticles wrapped by graphene[J].Adv Mater,2012,24:1084-1088.
[19] Wang D T,Li X,Chen J F,et al.Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation[J].Chem Eng J,2012,198-199:547-554.
[20] Lee J G,Kim D Y,Park J J,et al.Graphene-titania hybrid photoanodes by supersonic kinetic spraying for solar water splitting[J].J Am Ceram Soc,2014,97(11):3660-3668.
[21] Ng Y H,Iwase A,Kudo A,et al.Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting[J].Phys Chem Lett,2010,1:2607-2612.
[22] Hasan M R,Hamid S B A,Basirun W J,et al.Ga doped RGO-TiO2 composite on an ITO surface electrode for investigation of photoelectrocatalytic activity under visible light irradiation[J].New J Chem,2015,39:369-376.
[23] Zhai C Y,Zhu M S,Bin D,et al.Visible-light-assisted electrocatalytic oxidation of methanol using reduced graphene oxide modified Pt nanoflowers-TiO2 nanotube arrays[J].ACS Appl Mater Interfaces,2014,6:17753-17761.
[24] Devadoss A,Sudhagar P,Das S,et al.Synergistic metal-metal oxide nanoparticles supported electrocatalytic graphene for improved photoelectrochemical glucose oxidation[J].ACS Appl Mater Interfaces,2014,6:4864-4871.
[25] Cheng J,Zhang M,Wu G,et al.Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes[J].Environ Sci Technol,2014,48:7076-7084.
[26] Ma W G,Han D X,Gan S Y,et al.Rapid and specific sensing of gallic acid with a photoelectrochemical platform based on polyaniline-reduced graphene oxide-TiO2[J].Chem Commun,2013,49:7842-7844.
[27] Jing L,Yang Z Y,Zhao Y F,et al.Ternary polyaniline-graphene-TiO2 hybrid with enhanced activity for visible-light photoelectrocatalytic water oxidation[J].J Mater Chem A,2014,2:1068-1075.
[28] Jia L P,Sun X,Jiang Y M,et al.A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution[J].Adv Funct Mater,2015,25:1814-1820.
[29] Wang M,Shang X K,Yu X L,et al.Graphene-CdS quantum dots-polyoxometalate composite films for efficient photoelectrochemical water splitting and pollutant degradation[J].Phys Chem Chem Phys,2014,16:26016-26023.
[30] Yan M,Hua Y Q,Zhu F F,et al.Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency inphotocatalytic degradation of antibiotics[J].Appl Catal B:Environ,2017,202:518-527.
[31] 王从续.石墨烯量子点/氮化碳复合物的制备及光催化性能研究[J].太原:中北大学,2018.
[32] Pan D Y,Xi C,Li Z,et al.Electrophoretic fabrication of highly robust,efficient,and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays[J].J Mater Chem A,2013,1:3551-3555.
[33] Ma C Y,Ma D K,Yu W Y,et al.Ag and N-doped graphene quantum dots co-modified CuBi2O4 submicron rod photocathodes with enhanced photoelectrochemical activity[J].Appl Surf Sci,2019,481:661-668.
[34] Pradoa T M,Carrico A,Cincotto F H,et al.Bismuth vanadate/graphene quantum dot:a new nanocomposite for photoelectrochemical determination of dopamine[J].Sensor Actuat B Chem,2019,285:248-253.
[35] You F H,Zhu M,Ding L J,et al.Design and construction of Z-scheme Bi2S3/nitrogen-doped graphene quantum dots:boosted photoelectric conversion efficiency for high performance photoelectrochemical aptasensing of sulfadimethoxine[J].Biosens Bioelectron,2019,130:230-235.
[36] Zhang Y,Cui W Q,An W J,et al.Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with 3D network structure[J].Appl Catal B:Environ,2018,221:36-46.
[37] Cui W Q,He J,Wang H,et al.Polyaniline hybridization promotes photo-electro-catalytic removal of organic contaminants over 3D network structure of rGH-PANI/TiO2 hydrogel[J].Appl Catal B:Environ,2018,232:232-245.
[38] Chen D M,Yang J J,Zhu Y,et al.Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance[J].Appl Catal B:Environ,2018,233:202-212.
[39] Wang M,Shang X K,Yu X L,et al.Graphene-CdS quantum dots-polyoxometalate composite films for efficient photoelectrochemical water splitting and pollutant degradation[J].Chem Chem Phys,2014,16:26016-26023.