Membrane biofouling is the bottleneck which restricting the development of membrane separation technology.It is of great significance to fabricate composite membranes with anti-biofouling and excellent separation performance for the development of ultrafiltration membranes.Based on mussel biomimetic technology,polydopamine (PDA) was deposited on the surface of polyethersulfone (PES) ultrafiltration membrane by using dopamine (DA) and polyethyleneimine (PEI) co-deposition system,and further loaded with nano-silver on the membrane surface to fabricate Ag-PDA/PES composite membrane.The membrane surface morphology,surface chemical properties,separation properties and biofouling performance were characterized by field emission scanning electron microscopy (SEM),XPS and surface contact angle.The results indicated that the contact angle of the PES film was reduced from 70.5° to 35.8°,and the pure water flux was increased from 262L/(m2·h) to 315L/(m2·h) when the PDA was deposited on the surface of the film.The antibacterial performance experiment showed that the surface antibacterial rate of Ag-PDA/PES was 98%.The composite membrane had excellent antibacterial properties against Pseudomonas aeruginosa and Escherichia coli.The simulated wastewater separation experiments shown that the Ag-PDA/PES had good separation performance for humic acid-containing wastewater.After 12 hours of continuous filtration,the flux was still as high as 165.9L/(m2·h),compared with the initial flux.It decreased by 12.4%,which was significantly better than the unmodified membrane.
Huang Jian, Tang Shigang, Yang Yunfeng
. Fabrication and performance of anti-bacterial ultrafiltration membrane based on mussel-inspired technology[J]. New Chemical Materials, 2021
, 49(1)
: 264
-268
.
DOI: 10.19817/j.cnki.issn 1006-3536.2021.01.058
[1] 张培斌,唐安琪,路景驭,等.基于贻贝仿生化学的分离功能材料[J].功能高分子学报,2017,30(1):1-14.
[2] 程毅丽,康国栋,贾静璇,等.聚四氟乙烯中空纤维膜的多巴胺自聚表面改性及性能研究[J].高校化学工程学报,2015,29(5):1259-1264.
[3] 岳鑫业,李俊俊,王铭,等.亲水性添加剂多巴胺对聚酰胺反渗透膜性能的影响[J].2014,40(8):25-28.
[4] Lee S.Membrane characterization by dynamic hysteresis:Measurements,mechanisms,and implications for membrane fouling[J].Journal of Membrane Science,2011,366(1):17-24.
[5] Wang J,Zhang W,Yue X,et al.One-pot) synthesis) of) multifunctional) magngic) ferrite-MoS2-arbon) dot) nanohybrid adsorbent) for) efficient) Pb(ⅱ)) remova[J].Journal of Materials Chemistry A,2016,4(10):3893-3900.
[6] Haeshin L,Philip B M.Mussel-inspired surface chemistry for multifunctional coatings[J].Science,2007,318:426-432.
[7] Karan C K,Bhattachaijee M.Self-healing) and) moldable) metallogels) as) the) recyclable aterials for selective dye absorption and separation[J].ACS Applied Materials & Interfaces,2016,8(8):5526-5535.
[8] Zhang J,Wu L,Zhang Y,et al.MusseI) and) fish) scale-inspired) underwater superoleophobic) kapok) membranes) for) continuous) and) simultaneous) removal) of) insoluble oils) and) soluble dyes in water[J].Journal of Materials Chemistry A,2015,3(36):18475-18482.
[9] 蒋金规.基于多巴胺自聚-组装行为的聚合物分离膜表面修饰与性能研究[D].杭州:浙江大学,2014.
[10] Chen W,SuY,Peng J,et al.Efficient wastewater treatment) by) membranes through constructing tunable antifouling membrane surfaces[J].Environmental Science & Technology,2011,45(15):6545-6552.
[11] 刘富,PVDF、PVC微孔膳亲水化改性的研究[D].杭州:浙江大学,2007.
[12] An Q F,Zhao Q.Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance[J].Journal of Membrane Science,2012,390-391:243-253.
[13] Jiang J H,Zhu L P,Li X L.Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin[J].Journal of Membrane Science,2012,364(1-2):194-202.
[14] Dreyer D R,Miller D J,Freeman B D,et al.Elucidating the structure of poly (dopamine)[J].Langmuir,2012,28(15):6428-6435.
[15] Yang H C,Liao K J,Huang H.Mussel-inspired modification of a polymer membrane for ultrahigh water permeability and oil-in-water emulsion separation[J].Journal of Materials Chemistry A,2014,2(26):10225-10230.
[16] Zhou M,Nemade P R,Lu X.New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly[J].Journal of the American Chemical Society,2007,129(31):9574-9575.
[17] Saeki D,Imanishi M,Ohmukai Y.Stabilization of layer-by-layer assembled nanofiltration membranes by crosslinking via amide bond formation and siloxane bond formation[J].Journal of Membrane Science,2013,447:128-133.