Influence of SiO2 nanoparticle on surface tension of binary nitrate salt

Expand
  • 1. Beijing Key Laboratory of Heating,Gas Supply,Ventilation and Air Conditioning,Beijing University of Civil Engineering and Architecture,Beijing 100044;
    2. Henan Dongda High Temperature Energy-Saving Material Co.,Ltd.,Hebi 458030;
    3. Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education,Key Laboratory of Heat Transfer and Energy Conversion of Beijing Municipality,Beijing University of Technology,Beijing 100124

Received date: 2020-07-21

  Revised date: 2020-10-19

  Online published: 2021-01-27

Abstract

Surface tension of molten salt directly affects the liquid phase transport coefficient,while nanoparticles can regulate the surface tension of molten salts.SiO2 nanoparticles with different concentrations were dispersed into a binary nitrate salt by high-temperature melting method,and five molten salt nanofluids were prepared.Then surface tension of the base salt and the five molten salt nanofluids was then measured by the pulling-escape method,and the correlations were fitted between the surface tension and the salt temperature.In addition,the micromorphology of the nanofluids was analyzed by scanning electron microscope method.Results shown that the SiO2 nanoparticles increased the surface tension of the nanofluids,and the surface tension decreased with the increase of salt temperature.

Cite this article

Zhang Hui, Li Rui, Xiong Yaxuan, Leng Guanghui, Wu Yuting, Xu Peng, Ma Chongfang . Influence of SiO2 nanoparticle on surface tension of binary nitrate salt[J]. New Chemical Materials, 2021 , 49(1) : 157 -161 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.01.035

References

[1] Kenisarin M M.High-temperature phase change materials for thermal energy storage[J].Renewable & Sustainable Energy Reviews,2010,14(3):955-970.
[2] 熊亚选,栗博,吴玉庭,等.添加纳米SiO2对四元溴化盐相变热物性的影响[J].化工学报,2017,68(4):1299-1305.
[3] Shin D,Banerjee D.Enhanced specific heat of silica nanofluid[J].Journal of Heat Transfer,2011,133(2):024501.
[4] Shin D,Banerjee D.Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J].International Journal of Heat & Mass Transfer,2015,84:898-902.
[5] Chieruzzi M,Miliozzi A,Crescenzi T,et al.A new phase change material based on potassium nitrate with silica and alumina particles for thermal energy storage[J].Nanoscale Research Letters,2015,10:273.
[6] Lasfargues M,Bell A,Ding Y.In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications[J].J Nanopart Res,2016,18:150.
[7] 熊亚选,王振宇,徐鹏,等.添加纳米SiO2对单组分及二元硝酸盐热物性的影响[J].化工学报,2018,69(10):4418-4426.
[8] Janz G J.Molten salts handbook[M].New York:Academic Press,1967.
[9] Janz G J,Ursula K,Siegenthaler H F,et al.Molten salts:volume 3 nitrates,nitrites,and mixtures-electrical conductance,density,viscosity,and surface tension data[J].Journal of Physical and Chemical Reference Data,1972,1(3):583-744.
[10] Janz G J,Tomkinns R P T,Allen C B,et al.Molten salts:volume 4,part 3,bromides and mixtures,iodides and mixtures-electrical conductance,density,viscosity,and surface tension data[J].Journal of Physical and Chemical Reference Data,1977,6(2):411-587.
[11] Janz G J,Tomkinns R P T,Allen C B,et al.Molten salts:volume 4,part 2,chlorides and mixtures-electrical conductance,density,viscosity,and surface tension data[J].Journal of Physical and Chemical Reference Data,1975,4(4):874-1161.
[12] Feng T Q.Theoretical and experimental research on liquid metal high temperature heat pipe[D].Hangzhou:Zhejiang University,1998.
[13] 别略耶夫A И,热姆邱仁娜E A,费尔散诺娃Л A.熔盐物理化学[M].胡方华[译].北京:中国工业出版社,1963.
[14] 史建峰,熊亚选,吴玉庭,等.四元溴化盐熔体表面张力特性[J].化工学报,2015,66(10):3820-3825.
[15] 费业泰.误差理论和数据处理[M].第6版.北京:机械工业出版社,2010,82-92.
[16] Gharagozloo P E,Goodson K E.Aggregate fractal dimensions and thermal con-duction in nanofluids[J].Journal of Applied Physics,2010,108(7):074309.
[17] Said Z,Saidur R,Rahim N A,et al.Optical properties of metal oxides based nanofluids[J].Int Commun Heat Mass Transf,2014,59:46-54.
[18] Yang Y,Oztekin A,Neti S,et al.Particle agglomeration and properties of nanofluids[J].J Nanopart Res,2012,14(5):852.
[19] Yu M H,Niu Y T,Yang Y N,et al.An approach to prepare polyethylenimine functionalized silica-based spheres with small size for Si RNA delivery[J].Applied Materials & Interfaces,2014,6:15626-15631.
[20] Liang X H,Barrett K S,Jiang Y B,et al.Rapid silica atomic layer deposition on large quantities of cohesive nanoparticles[J].Applied Materials & Interfaces,2010,2:2248-2253.
[21] 郑骏驰.纳米二氧化硅的表面修饰及其对天然橡胶复合材料结构与性能的影响[D].北京:北京化工大学,2018.
[22] Xiong Y X,Wang Z Y,Wu Y T,et al.Performance enhancement of bromide salt by nano-particles dispersion for high-temperature heat pipes in concentrated solar power plants[J].Applied Energy,2019,237:171-179.
Options
Outlines

/