Review on bacteriostatic effect for pathogenic bacteria in civil aircraft cabin

Expand
  • Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307

Received date: 2019-09-30

  Revised date: 2020-10-03

  Online published: 2021-01-27

Abstract

The internal space of civil aircraft cabin is narrow and crowded,it often causes the spread of pathogenic bacteria.The main transmission ways of pathogenic bacteria in the cabin of civil aircraft include direct contact transmission,indirect contact transmission and air transmission.In order to prevent the transmission of pathogenic bacteria of indirect contact and air contact,experts at home and abroad have achieved double effects of filtering and bacteriostasis by the fix of bacteriostatic agents on HEPA filter or the research and development of filter materials with bacteriostasis function.The experts have the exploration of the dissemination rule of pathogenic bacteria in cabin air and the influencing factors of bacterial distribution concentration under three kinds ways,through the establishment of CFD numerical simulation model of cabin air.And they did the surface bacteriostatic function of facilities in cabin was modified,by adding various bacteriostatic materials in plastics and fabrics.These research results and research status were summarized,and pointed out that engineering application practice research should be further carried out in combination with the special environment of low pressure and low humidity in the cabin of civil aircraft,as well as the theoretical research of CFD model with high prediction accuracy.

Cite this article

Zhang Zhongbo, Li Xiuqin, Li Boxuan . Review on bacteriostatic effect for pathogenic bacteria in civil aircraft cabin[J]. New Chemical Materials, 2021 , 49(1) : 41 -46 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.01.010

References

[1] Wenzel R P.Transmission of the severe acute respiratory syndrome on aircraft[J].New England Journal of Medicine,2003,349(25):2416-2422.
[2] Peiris J S M,Yuen K Y,Osterhaus A D M E,et al.The severe acute respiratory syndrome[J].New England Journal of Medicine,2004,350(17):1797.
[3] Mangili A,Gendreau M A.Transmission of infectious diseases during commercial air travel[J].Lancet,2005,365(9463):989-996.
[4] Musher Daniel M.How contagious are common respiratory tract infections[J].New England Journal of Medicine,2003,348(13):1256-1266.
[5] Thomas A,Kenyon M D,Sarah E,et al.Transmission of multidrug resistant mycobacterium tuberculosis during a long airplane flight[J].New England Journal of Medicine,1996,334(39):933-938.
[6] Ai Z T,Melikov A K.Airborne spread of expiratory droplet nuclei between the occupants of indoor environments:a review[J].Indoor Air (S0905-6947),2018,28(4):500-524.
[7] 陈希远,于天鹏,欧阳建亮,等.考虑再循环风的飞机座舱引气污染仿真研究[J].科学技术与工程,2017,17(19):295-300.
[8] Li Y,Zhao B.Application of building simulation tools for studying airborne infection and its control[J].Building Simulation (S1996-3599),2012,5(1):3-4.
[9] 刘贤明,马云骏.含溶菌酶的HEPA与双重杀菌过滤技术[J].家用电器科技,2001(2):57-59.
[10] 甄辉,杜少平,肖小军.基于Cu/TiO2制备的新型空气净化过滤装置在除菌中的应用[J].南昌大学学报:医学版,2017,57(4):1-3,31.
[11] 余改丽.含有石墨烯的PAN纳米过滤膜的抑菌性及拉伸性能[D].上海:东华大学,2017.
[12] 刘亭亭.一种基于壳聚糖的新型抗菌空气滤料研究[D].天津:天津大学,2017.
[13] 罗成维.PP过滤材料抗菌抑菌的功能性研究[D].大连:大连工业大学,2015.
[14] 卢国栋.供气方式对座舱环境的影响[D].南京:南京航空航天大学,2016.
[15] Zhang Z,Chen X,Sagnik M,et al.Experimental and numerical investigation of airflow and contaminant transport in an airliner cabin mockup[J].Building and Environment,2009,44(1):85-94.
[16] Sagnik M,Chen Q Y.Influence of cabin conditions on placement and response of contaminant detection sensors in a commercial aircraft[J].Journal of Environmental Monitoring,2008,10(1):71-81.
[17] Kühn M,Bosbach J,Wagner C.Experimental parametric study of forced and mixed convection in a passenger aircraft cabin mock-up[J].Building and Environment,2009,44(5):961-970.
[18] Acikgoz M B,Akay B,Miguel A F,et al.Airborne pathogens transport in an aircraft cabin[J].Defect & Diffusion Forum,2011,312-315(312-315):865-870.
[19] Nielsen P.Analysis and design of room air distribution systems[J].HVAC&R Research,2007,13(6):987-997.
[20] 张丽杰.大型客机座舱内考虑供气系统的流动数值模拟策略[D].天津:天津大学,2016.
[21] 李鹏辉.大型商用客机舱内气流组织的研究[D].大连:大连理工大学,2010.
[22] Zhang T T,Li P,Wang S.A personal air distribution system with air terminal sembedded in chair armrests on commercial airplanes[J].Building and Environment,2012,47:89-99.
[23] Zítek P,Vyhlídal T,Simeunovic G,et al.Novel personalized and humidified air supply for airliner passengers[J].Building and Environment,2010,45(11):2345-2353.
[24] Zhang T,Chen Q.Comparison of different ventilation systems for commercial aircraft cabins[C].//清华大学.第十届室内空气品质和质量国际学术会议,2005:3298-3303.
[25] Pang L P,Xu J,Fang L,et al.Evaluation of an improved air distribution system for aircraft cabin[J].Building and Environment,2013,59(none):145-152.
[26] Zhang T F,Yin S,Wang S G.An under-aisle air distribution system facilitating humidification of commercial aircraft cabins[J].Building and Environment,2010,45(4):907-915.
[27] 穆小红.民机客舱内污染物传播规律的数值模拟研究[D].南京:南京理工大学,2014.
[28] 石安富,龚云表.工程塑料[M].上海:上海科学技术出版社,2003.
[29] 卢秀萍,邵金璐.ABS/改性抗菌纳米ZnO的力学及抑菌性能[J].合成树脂及塑料,2006(5):11-13,77.
[30] 赵斯梅.载银抗菌ABS塑料的制备及性能分析[J].辽宁丝绸,2013(3):30-31+34.
[31] 李崇,覃礼钊,向友来,等.银离子注入与银/铜离子双注入ABS树脂抗菌性能研究[J].塑料工业,2014,42(8):122-126.
[32] 田孟齐,刘文涛,何素芹,等.ABS/Nano-ZnO/CCA复合材料的制备及抗菌性能研究[J].塑料科技,2019,47(7):18-23.
[33] 韩晓建,黄争鸣,何创龙,等.聚碳酸酯/TiO2超细纤维的制备与表征[J].无机材料学报,2007(3):407-412.
[34] 张灵英,陈国华.石墨烯微片对尼龙6的改性研究[J].材料导报,2011,25(14):85-88,92.
[35] 蒋雷.聚酰胺载银纳米二氧化钛抗菌纤维制备[D].长沙:中南大学,2012.
[36] 张冲.棉织物抗菌整理方法设计及抗生物膜性能研究[D].浙江:浙江理工大学,2018.
[37] Chen Y,Niu M Q,Yuan S,et al.Durable antimicrobial finishing of cellulose with QSA silicone by supercritical adsorption[J].Applied Surface Science,2013,264(complete):171-175.
[38] 张淑敏,李蓉,栗志广,等.季铵盐抗菌剂整理涤纶织物的研究[J].化工新型材料,2018,46(10):275-279.
[39] Sun J,Sun Y Y.Acyclic N-halamine-based fibrous materials:Preparation,characterization,and biocidal functions[J].Journal of Polymer Science,Part A.Polymer Chemistry,2006,44(11):3588-3600.
[40] 邵明,赵敏,周翔.棉织物纳米银抗菌整理[J].印染,2006(10):1-4.
[41] 高晓红,贾雪平.抗菌棉织物的纳米银原位制备及其性能[J].印染,2014,40(5):15-18.
[42] Subramanian B,Anu Priya K,Thanka Rajan S,et al.Antimicrobial activity of sputtered nanocrystalline CuO impregnated fabrics[J].Materials Letters,2014,128:1-4.
[43] 周婷婷,林红,陈宇岳.纳米银的制备及其对涤纶织物抗菌整理[J].纺织学报,2011,32(12):98-102.
[44] Payne D J.Anti-infectives:resistance,biothreats and prospects for new agents[J].Current Opinion in Pharmacology,2005,5(5):0-451.
[45] 李杰.抗菌聚酯纤维的制备及研究[J].现代化工,2018,38(7):116-119.
[46] 晋缙,王朝生,王华平,等.铜锌复合抗菌聚酯纤维的制备及性能研究[J].合成纤维工业,2017,40(2):11-16.
[47] Dural A,Ozcan G,Skrifvars M,et al.In vitro assesment of antimicrobial activity and characteristics of;polyamide 6/silver nanocomposite fibers[J].Fibers and Polymers,2013,14(9):1415-1421.
[48] 孙海波,王双成,吕冬生,等.生物质石墨烯改性聚酰胺纤维的制备及性能表征[J].合成纤维,2017,46(7):14-16.
[49] Tang L,Wang D Y,Xu Q S,et al.Preparation and characterization of antibacterial nylon 6 fiber[J].Materials Science Forum,2017,898:2254-2262.
[50] 应莹,顾莉琴,肖茹,等.抗菌尼龙6纤维的制备及其性能的研究[J].合成纤维,2009,38(2):26-29.
[51] 解文彬,侯大寅,魏安方,等.纳米PAN纤维基磁控溅射Ag膜工艺的优化及其抑菌性研究[J].化工新型材料,2014,42(3):163-165.
Options
Outlines

/