Progress on preparation and structural regulation of clay-based heterogeneous catalysts

Expand
  • College of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou 730050

Received date: 2019-08-05

  Revised date: 2020-08-13

  Online published: 2021-01-21

Abstract

Attaching monometals,bimetals,polymetals,magnetic metals,etc.to the clay to catalyze the degradation of target pollutants can often achieve better results.The research of heterogeneous supported clay catalysts have been used in the catalytic degradation of refractory organics wastewater is a hotspots in recent years.The effects of clay pretreatment,catalyst preparation methods,preparation conditions and processes on the structure and morphology of the catalysts were summarized,and the research progress of structure regulation and optimization conditions in the preparation process of heterogeneous supported clay catalysts was reviewed Emphasis which aspects the catalyst needed to be focused on was indicated.

Cite this article

Guo Qiyang, Zhang Ting, Bai Ge, Dong Lingyu, Qian Chunyuan . Progress on preparation and structural regulation of clay-based heterogeneous catalysts[J]. New Chemical Materials, 2020 , 48(12) : 34 -38 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.12.009

References

[1] 关文贤,王志红,聂锦旭,等.改性凹凸棒土负载纳米铁的制备及性能[J].环境工程学报,2016,10(12):6940-6946.
[2] Feng Jiyun,Hu Xijun,Po Lock Yue.Discoloration and mineralization of Orange Ⅱ by using abentonite clay-based Fe nanocomposite film as aheterogeneous photo-Fenton catalyst[J].Water Research,2005,39:89-96.
[3] Bai Cuiping,Gong Wenqi,Feng Dexin,et al.Natural graphite tailings as heterogeneous Fenton catalyst for the decolorizationof rhodamine B[J].Chemical Engineering Journal,2012,197:306-313.
[4] Hassan H,Hameed B H.Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4[J].Chemical Engineering Journal,2011,171:912-918.
[5] Chen Jianxin,Zhu Lizhong.Oxalate enhanced mechanism of hydroxyl-Fe-pillared bentonite during the degradation of Orange Ⅱ by UV-Fenton process[J].J Hazard Mater,2011,185(2-3):1477-1481.
[6] 王冠.凹凸棒石黏土负载纳米TiO2对重金属离子吸附性能研究[D].兰州:兰州交通大学,2013.
[7] 赵亿.热处理凹凸棒石及其对甲醛的吸附性能研究[C].中国矿物岩石地球化学学会第17届学术年会论文摘要集.中国矿物岩石地球化学学会:中国矿物岩石地球化学学会,2019.
[8] Yang Xiaoling,Lin Xiwen,Mi Yiduo,et al.Ionic liquid-type surfactant modified attapulgite as a novel and efficient dispersive solid phase material for fast determination of pyrethroids in tea drinks[J].Journal of Chromatography B,2018,1089:70-77.
[9] Shi J,Yang X,Wang X,et al.Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites[J].Polymer Testing,2010,29(5):596-602.
[10] Xu Congbin,Qi Jia,Yang Wenjie,et al.Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay[J].Science of the Total Environment,2019,686(10):476-483.
[11] Zhang Xue,Lei Qin,Wang Xingzhang,et al.Removal of Cr(Ⅲ) using humic acid-modified attapulgite[J].Journal of Environmental Engineering,2019,145(6):1541.
[12] 周全,莫羡忠,陆春谊,等.超声插层法制备0.84nm水合高岭石[J].化工技术与开发,2018,47(7):11-14.
[13] 高党鸽,张亚红,马建中.聚合物/凹凸棒土纳米复合材料的研究进展[J].材料导报,2017,31(21):123-129;145.
[14] Xu Yongshuai,Zhang Lili,Chen Jiaqi,et al.Synthesis of nano-Ag-assisted attapulgite/g-C3N4 composites with superior visible light photocatalytic performance[J].Materials Chemistry and Physics,2019,221:447-456.
[15] Darvishi Zahra,Morsali Ali.Sonochemical preparation of palygorskite nanoparticles[J].Applied Clay Science,2011,51(1/2):51-53.
[16] 刘静豪.高岭石纳米管的制备、微结构调控及其对亚甲基蓝的吸附性能研究[D].郑州:郑州大学,2017.
[17] 关文贤.改性凹凸棒土负载纳米铁的制备及性能表征[D].广州:广东工业大学,2016.
[18] Guo Haijun,Li Qinglin,Zhang Hairong,et al.CO2 hydrogenation over acid-activated attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu-ZnO based catalysts[J].Molecular Catalysis,2019,476:110499.
[19] Liang Xuexue,Ouyang Xiaokun,Wang Songyan,et al.Efficient adsorption of Pb(Ⅱ) from aqueous solutions using aminopropyltriethoxysilane-modified magnetic attapulgite@chitosan (APTS-Fe3O4/APT@CS) composite hydrogel beads[J].International Journal of Biological Macromolecules,2019,137(15):741-750.
[20] 王一双.镍基凹凸棒石催化剂催化蒸汽重整生物油模型物制氢研究[D].淮南:安徽理工大学,2018.
[21] Rossetti I,Lasso J,Finocchio E.TiO2-supported catalysts for the steam reforming of ethanol[J].Applied Catalysis A-General,2014,477(477):42-53.
[22] Assaf P G M,Nogueira F G E,Assaf E M.Ni and Co catalysts supported on alumina applied to steam reforming of acetic acid:representative compound for the aqueous phase of bio-oil derived from biomass[J].Catalysis Today,2013,213(37):2-8.
[23] Li Zhikun,Hu Xun,Zhang Lijun,et al.Steam reforming of acetic acid over Ni/ZrO 2 catalysts:effects of nickel loading and particle size on product distribution and coke formation[J].Applied Catalysis A-General,2012,417(29):281-289.
[24] 陈敏敏.凹凸棒石基非均相催化剂的制备及处理含亚甲基蓝废水的应用研究[D].兰州:兰州理工大学,2018.
[25] Zhang Wenying,Qian Linbo,Ouyang Da,et al.Effective removal of Cr(Ⅵ) by attapulgite-supported nanoscale zero-valent iron from aqueous solution:enhanced adsorption and crystallization[J].Chemosphere,2019,221(4):683-692.
[26] 符玉绒,许春丽.水滑石负载型PdCu催化剂的制备及性能[J].工业催化,2018,26(12):43-49.
[27] 范莉渊.制备方法对Pd-Cu/凹凸棒土催化剂CO低温催化氧化性能影响[D].太原:山西大学,2015.
[28] 徐亚琳,李潇,吕婷婷,等.沉积-沉淀法制备Pd-Cu/凹凸棒土催化剂及其常温潮湿环境下CO催化氧化性能[J].工业催化,2017,25(5):28-32.
[29] 钟琼,李欢.Mg/Al水滑石微波共沉淀法合成及其对BrO-3吸附性能的研究[J].环境科学,2014,35(4):1566-1575.
[30] 曹耀武.纳米水氯铁镁石高效除砷机理及其在高砷水处理中的应用[D].武汉:中国地质大学,2018.
[31] 赵娣芳,韩成良,鲁红典.机械力化学效应在凹凸棒石/TiO2复合颗粒制备中的应用研究[J].化工新型材料,2010,38(6):100-101;107.
[32] 程宏飞,杜贝贝,孙志明,等.插层法制备g-C3N4/高岭石复合材料及其光学性能[J].人工晶体学报,2017,46(7):1258-1262;1266.
[33] 崔家民,杨艳青,靳虎芳,等.凹凸棒/Bi2WO6光催化复合材料的制备及其性能[J].复合材料学报,2019,36(9):2119-2130.
[34] 甄文媛,李青.N掺杂TiO2/凹凸棒复合光催化剂的制备及性能研究[J].北京服装学院学报:自然科学版,2018,38(4):23-30.
[35] 郭林秀.Cu-Ni双金属负载凹凸棒土催化剂的研究[J].山西冶金,2014,37(1):16-18.
[36] Wei Yuexing,Song Min,Yu Lei,et al.Hydroxyl-promoter on hydrated Ni-(Mg,Si) attapulgite with high metal sintering resistance for biomass derived gas reforming[J].International Journal of Hydrogen Energy,2019,44(36):20056-20067.
[37] 龚璇.纳米Fe/Ni的负载和改性及其去除重金属和氯代有机物性能与机理研究[D].武汉:武汉科技大学,2018.
[38] Ding Chunxia,Xiao Sijia,Lin Yingjun,et al.Attapulgite-supported nano-Fe0/peroxymonsulfate for quinclorac removal:performance,mechanism and degradation pathway[J].Chemical Engineering Journal,2019,360(15):104-114.
[39] 陈翌昱.有机凹凸棒土负载纳米铁的制备、表征及对模拟废水中Cr(Ⅵ)的去除[D].徐州:中国矿业大学,2018.
[40] 万马.凹凸棒石负载锰氧化物催化剂低温SCR反应动力学研究[D].合肥:合肥工业大学,2015.
[41] 谢登裕,蒋亿,纪媛媛,等.凹凸棒石/g-C3N4-AgFeO2复合材料制备及其光催化性能[J].无机化学学报,2019,35(2):236-244.
[42] 马志远.白云石凹凸棒石黏土负载铁镍催化裂解焦油[D].合肥:合肥工业大学,2018.
[43] Ashok J,Kawi S.Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound[J].ACS Catalysis,2014,4(1):289-301.
[44] 刘向辉,徐鑫,王泽宇.白云石质凹凸棒土负载Cr的低温脱硝实验研究[J].湖南文理学院学报:自然科学版,2018,30(3):27-31.
[45] 吕杭杰,贾建洪,金赞芳,等.Fe-Mn负载凹凸棒催化剂的制备及协同臭氧化处理甲基橙模拟废水的应用[J].高校化学工程学报,2017,31(5):1217-1224.
[46] 李守博,雒海洲,焦旭东,等.凹凸棒土负载氮化碳-二氧化钛的制备与光催化性能研究[J].现代盐化工,2018,45(4):5-7;50.
[47] 项学芃,洪晓梅,张婉君,等.凹凸棒石负载Bi2WO6掺杂Fe3+复合光催化剂的制备与表征[J].广东化工,2018,45(10):14-16.
[48] 徐惠,唐进,李春雷,等.聚苯胺/凹凸棒石负载纳米铁降解水溶液中甲基橙[J].应用化学,2016,33(1):92-97.
[49] Sun Zhiming,Zheng Shuilin,Godwin Ayoko A,et al.Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials[J].Journal of Hazardous Materials,2013,263(2):768-777.
[50] 刘芮华.凹凸棒土负载金属氧化物催化氧化—加碱沉淀去除络合态铜研究[D].西安:陕西科技大学,2018.
[51] 鲍祥,张艳,贺学周,等.改性凹凸棒土负载铝盐吸附剂去除水中总磷研究[J].安徽农学通报,2016,22(19):28-31.
[52] 韩书文.以凹凸棒土为载体的催化剂制备及对有机污染物降解性能研究[D].扬州:扬州大学,2018.
[53] 刘芳,施祺儒.负载ZnO凹凸棒石脱除硫化氢的研究[J].化工技术与开发,2018,47(5):50-53.
[54] 施祺儒,刘芳.负载氯化镁凹凸棒处理含铅废水的研究[J].甘肃高师学报,2019,24(2):23-26.
[55] 李风起.蒙脱土负载型催化剂的制备与表征[J].应用化工,2015,44(6):1088-1089;1094.
Options
Outlines

/