[1] Su X, Fu F, Yan Y, et al.Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing[J].Nature Communications, 2014, 5:4908.
[2] Sorrell S, Speirs J, Bentley R, et al.Shaping the global oil peak:a review of the evidence on field sizes, reserve growth, decline rates and depletion rates[J].Energy, 2012, 37(1):709-724.
[3] Thirugnanasambandama M, Iniyan S, GoiAc'5 R.A review of solar thermal technologies[J].Renewable & Sustainable Energy Reviews, 2010, 14(1):312-322.
[4] Van d B B, Vandecasteele C.Removal of pollutants from surface water and groundwater by nanofiltration:overview of possible applications in the drinking water industry[J].Environmental Pollution, 2003, 122(3):435-445.
[5] Raza A, Ding B, Zainab G, et al.In situ cross-linked superwetting nanofibrous membranes for ultrafast oil-water separation[J].Journal of Materials Chemistry A, 2014, 2(26):10137-10145.
[6] 多效鼓泡蒸发式太阳能海水淡化技术研究[D].杭州:浙江大学, 2010.
[7] Raza A, Lu J Y, Alzaim S, et al.Novel receiver-enhanced solar vapor generation:review and perspectives[J].Energies, 2018, 11(1):253-282.
[8] 李蛟, 刘俊成, 高从堦, 等.太阳能在海水淡化产业中的应用与研究进展[J].水处理技术, 2009, 35(10):11-15.
[9] 刘业凤, 胡海涛.太阳能海水淡化新技术综述[J].水处理技术, 2011, 37(8):7-10.
[10] Neumann O, Urban A S, Day J, et al.Solar vapor generation enabled bynanoparticles[J].ACS Nano, 2012, 7(1):42-49.
[11] Chen M, He Y, Zhu J, et al.An experimental investigation on sunlight absorption characteristics of silver nanofluids[J].Solar Energy, 2015, 115:85-94.
[12] Zielinski M S, Choi J W, La Grange T, et al.Hollow mesoporous plasmonicnanoshells for enhanced solar vapor generation[J].Nano Letters, 2016, 16(4):2159-2167.
[13] Wang X, Ou G, Wang N, et al.Graphene-based recyclable photo-absorbers forhigh-efficiency seawater desalination[J].ACS Applied Materials & Interfaces, 2016, 8(14):9194-9199.
[14] Zedan A F, Moussa S, Terner J, et al.Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of goldnanostructures in graphene oxide solutions[J].ACS Nano, 2012, 7(1):627-636.
[15] Ghasemi H, Ni G, Marconnet A M, et al.Solar steam generation by heatlocalization[J].Nature Communications, 2014, 5:4449.
[16] Wang Y, Zhang L, Wang P.Self-floating carbon nanotube membrane onmacroporous silica substrate for highly efficient solar-driven interfacial waterevaporation[J].ACS Sustainable Chemistry & Engineering, 2016, 4(3):1223-1230.
[17] Bae K, Kang G, Cho S K, et al.Flexible thin-film black gold membranes with ultra broadband plasmonic nano focusing for efficient solar vapour generation[J].Nature Communications, 2015, 6:10103.
[18] Zhou L, Tan Y, Ji D, et al.Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J].Science Advances, 2016, 2(4):e1501227-e1501227.
[19] Zhang P, Li J, Lv L, et al.Vertically aligned graphene sheets membrane for highlyefficient solar thermal generation of clean water[J].ACS Nano, 2017, 11(5):5087-5093.
[20] Zhang L, Tang B, Wu J, et al.Hydrophobic light-to-heat conversionmembranes with self-healing ability for interfacial solar heating[J].Advanced Materials, 2015, 27(33):4889-4894.
[21] Zhu M, Li Y, Chen G, et al.Tree-inspired design for high-efficiency water extraction[J].Advanced Materials, 2017, 29(44):1704107-1704107.
[22] Zhu M, Li Y, Chen F, et al.Plasmonic wood for high-efficiency solar steam generation[J].Advanced Energy Materials, 2018, 8(4):1701028-1701028.
[23] Ito Y, Tanabe Y, Han J, et al.Multifunctional porous graphene for high-efficiency steam generation by heat localization[J].Advanced Materials, 2015, 27(29):4302-4307.
[24] Li Z, Wang Y, Kozbial A, et al.Effect of airborne contaminants on the wettability of supported graphene and graphite[J].Nature Materials, 2013, 12(10):925-931.
[25] Li Y, Gao T, Yang Z, et al.3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination[J].Advanced Materials, 2017, 29(26):1700981-1700981.
[26] Yang J, Pang Y, Huang W, et al.Functionalized graphene enables highly efficient solar thermal steam generation[J].ACS Nano, 2017, 11(6):5510-5518.
[27] Wang G, Fu Y, Guo A, et al.Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation[J].Chemistry of Materials 2017, 29:5629-5635.
[28] Wang G, Yang F, Ma X, et al.Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation[J].Carbon, 2017, 114:117-124.
[29] Jiang Q, Tian L, Liu K K, et al.Bilayeredbiofoam for highly efficient solar steam generation[J].Advanced Materials, 2016, 28(42):9234-9234.
[30] Tian L, Luan J, Liu K K, et al.Plasmonicbiofoam:a versatile optically-active material[J].Nano Letters, 2015, 16(1):609.
[31] Xu N, Hu X, Xu W, et al.Mushrooms as efficient solar steam-generation devices[J].Advanced Materials, 2017, 29(28):1606762-1606762.
[32] Xue G, Liu K, Chen Q, et al.Robust and low-cost flame-treated wood for high-performance solar steam generation[J].ACS Applied Materials & Interfaces, 2017, 9(17):15052-15057.
[33] Chen C, Li Y, Song J, et al.Highly flexible and efficient solar steam generation device[J].Advanced Materials, 2017, 29(30):1701756.
[34] Liu K K, Jiang Q, Tadepalli S, et al.Wood-graphene oxide composite for highly efficient solar steam generation and desalination[J].ACS Applied Materials & Interfaces, 2017, 9(8):7675-7681.