Research progress on M/BiVO4(M=Ag、Au、Pt)composite material

Expand
  • 1.Key Laboratory of Preparation and Application of Environmental Friendly Materials,Ministry of Education,Jilin Normal University,Changchun 130103;
    2.Key Laboratory of Environmental Materials and Pollution Control,Jilin Normal University,Siping 136000;
    3.School of Environmental Science and Engineering,Jilin Normal University,Siping 136000;
    4.School of Chemistry,Jilin Normal University,Siping 136000

Online published: 2020-10-20

Abstract

Modification of noble metal M (M=Ag,Au,Pt) on the surface of bismuth vanadate (BiVO4) material to construct M/BiVO4 composite materials has been proven to improve the photocatalytic performance and photoelectric property.By regulating the size and morphology of M,the surface plasma resonance (SPR) effect of M can be generated to enhance the light absorption of M/BiVO4 composite materials.Moreover,the schottky barrier formed between BiVO4 and M can promote the separation and migration of photogenerated charges.The research progress on application of M/BiVO4 composite materials in the preparation technology,environmental pollution control,artificial light synthesis and supercapacitor was reviewed,and also prospected the future development of this kind of composite material.

Cite this article

Liu Wei, Qian Jingyi, Cao Xinyu, Chen Wenhui, Hao Yan, Zhao Guosheng . Research progress on M/BiVO4(M=Ag、Au、Pt)composite material[J]. New Chemical Materials, 2020 , 48(10) : 25 -29 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.10.006

References

[1] Roth R, Waring J.Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO4 compounds[J].Am Mineral, 1963, 48:1348-1356.
[2] Barata M A B, Neves M C, Pascoal Neto C, et al.Growth of BiVO4 particles in cellulosic fibres by in situ reaction[J].Dyes Pigments, 2005, 65(2):125-127.
[3] Barreca D, Depero L E, Di Noto V, et al.Thin films of bismuth vanadates with modifiable conduction properties[J].Chem Mater, 1999, 11(11):255-261.
[4] Bierlein J D, Sleight A W.Ferroelasticity in BiVO4[J].Solid State Commun, 1975, 16(1):69-70.
[5] Tokunaga S, Kato H, Kudo A.Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J].Chem Mater, 2001, 13(12):4624-4628.
[6] Park Y, McDonald K J, Choi K S.Progress in bismuth vanadate photoanodes for use in solar water oxidation[J].Chem Soc Rev, 2013, 42(6):2321-2337.
[7] Cooper J K, Gul S, Toma F M, et al.Electronic structure of monoclinic BiVO4[J].Chem Mater, 2014, 26(18):5365-5373.
[8] Liang Y Q, Tsubota T, Mooij L P A, et al.Highly improved quantum efficiencies for thin film BiVO4 photoanodes[J].J Phys Chem C, 2011, 115(35):17594-17598.
[9] 刘伟, 慕铭, 陈颖颖, 等.低维度纳/微结构单斜BiVO4聚集体光催化剂的研究进展[J].硅酸盐通报, 2018, 37(9):2845-2851.
[10] Zhao G S, Liu W, Hao Y, et al.Nanostructured shuriken-like BiVO4 with preferentially exposed {010} facets:preparation, formation mechanism, and enhanced photocatalytic performance[J].Dalton T, 2018, 47:1325-1336.
[11] Ou M, Nie H Y, Zhong Q, et al.Controllable synthesis of 3D BiVO4 superstructures with visible-light-induced photocatalytic oxidation of NO in the gas phase and mechanistic analysis[J].Phys Chem Chem Phys, 2015, 17(43):28809-28817.
[12] Kim C W, Son Y S, Kang M J, et al.(040)-crystal facet engineering of BiVO4 plate photoanodes for solar fuel production[J].Adv Energy Mater, 2016, 6(4):1501754.
[13] Merupo V I, Velumani S, Tabellout M, et al.High energy ball-milling synthesis of nanostructured Ag-doped and BiVO4-based photocatalysts[J].Chemistry Select, 2016, 1(6):1278-1286.
[14] Abdi F F, Firet N, van de Krol R.Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping[J].Chem Cat Chem, 2013, 5(2):490-496.
[15] Kohtani S, Hiro J, Yamamoto N, et al.Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation[J].Catal Commun, 2005, 6(3):185-189.
[16] Ge L.Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange[J].J Mol Catal A:Chem, 2008, 282(1-2):62-66.
[17] Zhang X F, Zhang Y B, Quan X, et al.Preparation of Ag doped BiVO4 film and its enhanced photoelectrocatalytic (PEC) ability of phenol degradation under visible light[J].J Hazard Mater, 2009, 167(1-3):911-914.
[18] Xu X, Du M, Chen T, et al.New insights into Ag-doped BiVO4 microspheres as visible light photocatalysts[J].RSC Adv, 2016, 6(101):98788-98796.
[19] Zhu S W, Li Q G, Li F, et al.One-pot synthesis of Ag+ doped BiVO4 microspheres with enhanced photocatalytic activity via a facile hydrothermal method[J].J Phys Chem Solids, 2016, 92:11-18.
[20] Hu J Y, Zhai C Y, Zeng L X, et al.Enhanced electrocatalytic ethanol oxidation reaction in alkaline media over Pt on a 2D BiVO4-modified electrode under visible light irradiation[J].Catal Sci Technol, 2018, 8(14):3562-3571.
[21] Lee M G, Moon C W, Sohn W, et al.Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by shape-controlled Au nanoparticles[J].Small, 2017, 13(37):1701644.
[22] Zhang A P, Zhang J Z.Synthesis and characterization of Ag/BiVO4 composite photocatalyst[J].Appl Surf Sci, 2010, 256(10):3224-3227.
[23] Chen L, Huang R, Ma Y J, et al.Controllable synthesis of hollow and porous Ag/BiVO4 composites with enhanced visible-light photocatalytic performance[J].RSC Adv, 2013, 3(46):24354-24361.
[24] Gao X M, Fu F, Zhang L P, et al.The preparation of Ag-BiVO4 metal composite oxides and its application in efficient photocatalytic oxidative thiophene[J].Physica B, 2013, 419:80-85.
[25] Fan H M, Wang D J, Xie T F, et al.The preparation of high photocatalytic activity nano-spindly Ag-BiVO4 and photoinduced carriers transfer properties[J].Chem Phys Lett, 2015, 640:188-193.
[26] Patil S S, Dubal D P, Tamboli M S, et al.Ag∶BiVO4 dendritic hybrid-architecture for high energy density symmetric supercapacitors[J].J Mater Chem A, 2016, 4(20):7580-7584.
[27] Kohtani S, Tomohiro M, Tokumura K, et al.Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts[J].Appl Catal B:Environ, 2005, 58(3-4):265-272.
[28] Hirakawa H, Shiota S, Shiraishi Y, et al.Au nanoparticles supported on BiVO4:effective inorganic photocatalysts for H2O2 production from water and O2 under visible light[J].ACS Catal, 2016, 6(8):4976-4982.
[29] Zhang B, Li J, Zhang B Q, et al.Selective oxidation of sulfides on Pt/BiVO4 photocatalyst under visible light irradiation using water as the oxygen source and dioxygen as the electron acceptor[J].J Catal, 2015, 332:95-100.
[30] Wang M N, Lu W, Chen D, et al.Synthesis of dendritic-like BiVO4:Ag heterostructure for enhanced and fast photocatalytic degradation of RhB solution[J].Mater Res Bull, 2016, 84:414-421.
[31] Booshehri A Y, Polo-Lopez M I, Castro-Alférez M, et al.Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar compound parabolic collector for inactivation of pathogens in well water and secondary effluent[J].Catal.Today, 2016, 281(Part 1):124-134.
[32] Van C N, Chang W S, Chen J W, et al.Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement[J].Nano Energy, 2015, 15:625-633.
[33] Zhang Z J, Zheng Q C, Sun L.Synthesis of 2-D nanostructured BiVO4:Ag hybrid as an efficient electrode material for supercapacitors[J].Ceram Int, 2017, 43(18):16217-16224.
[34] Myung N, Lee W, Lee C, et al.Synthesis of Au-BiVO4 nanocomposite through anodic electrodeposition followed by galvanic replacement and its application to the photocatalytic decomposition of methyl orange[J].Chem Phys Chem, 2014, 15(10):2052-2057.
[35] Chen L M, Yu Y F, Wu M, et al.Synthesis of hollow BiVO4/Ag composite microspheres and their photocatalytic and surface-enhanced raman scattering properties[J].ChemPlusChem, 2015, 80(5):871-877.
Options
Outlines

/