Research progress on preparation of MXenes composite and their application in electrochemistry

Expand
  • 1.Key Laboratory of Fine Chemicals in Universities of Shandong,School of Chemistry and Pharmaceutical Engineering,Qilu University of Technology,Jinan 250353;
    2.Zaozhuang Vocational College of Science & Technology,Tengzhou 277500

Online published: 2020-10-20

Abstract

2D transition metal carbides,nitrides or carbonitrides (MXenes) are widely used in the field of electrochemistry because of their ultra-high volume specific capacity,metal-grade conductivity,good hydrophilicity and abundant surface chemistry.Due to the exposure of the high-order metal atoms of MXenes 2D material on its surface,it is easy to phase change into metal oxides and collapse with 2D structure,which severely limits the application of MXenes itself.Therefore,the construction is of great significance for improving the oxidation resistance and performance of MXenes.The research progress on controllable preparation of MXenes 2D materials and other zero-dimensional,1D and 2D materials,and their latest application in electrochemical fields such as supercapacitors,lithium ion batteries,sodium ion batteries and lithium sulfur batteries were reviewed.

Cite this article

Liu Bingjie, Liu Yan, Zhou Guowei . Research progress on preparation of MXenes composite and their application in electrochemistry[J]. New Chemical Materials, 2020 , 48(10) : 1 -5 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.10.001

References

[1] Ding Li, Wei Yanying, Wang Yanjie, et al.A two-dimensional lamellar membrane:MXene nanosheet stacks[J].Angewandte Chemie International Edition, 2017, 56(7):1825-1829.
[2] Dall'Agnese Y, Rozier P, Taberna P L, et al.Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes[J].Journal of Power Sources, 2016, 306:510.
[3] Lukatskaya M R, Kota S, Lin Z F, et al.Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J].Nature Energy, 2017, 2(8):17105.
[4] Anasori Babak, Lukatskaya M R, Gogotsi Y, et al.2D metal carbides and nitrides (MXenes) for energy storage[J].Nature Reviews Materials, 2017, 2(2):34-50.
[5] Zhan Cheng, Naguib Michael, Lukatskaya M, et al.Understanding the MXene pseudocapacitance[J].the Journal of Physical Chemistry Letters, 2018, 9(6):1223-1228.
[6] Kim H, Anasori B, Gogotsi Y, et al.Thermoelectric properties of two-dimensional molybdenum-based MXenes[J].Chemistry of Materials, 2017, 29(15):6472-6479.
[7] Luo Jianmin, Tao Xinyong, Zhang Jun, et al.Sn4+ ion decorated highly conductive Ti3C2 MXene:promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J].ACS Nano, 2016, 10(2):2491-2499.
[8] Huang Jimei, Meng Ruijin, Zu Lianhai, et al.Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries[J].Nano Energy, 2018, 46:20-28.
[9] Ren C E, Zhao M Q, Makaryan T, et al.Porous two-dimensional transition metal carbide (MXene) flakes for high-performance li-ion storge[J].Chem Electro Chem, 2016, 3(5):689-693.
[10] Mashtalir O, Lukatskaya M R, Zhao M Q, et al.Amine-assisted delamination of Nb2C MXene for li-ion energy storage devices[J].Advanced Materials, 2015, 27(23):3501-3506.
[11] Kajiyama S, Szabova L, Sodeyama K, et al.Sodium-ion intercalation mechanism in MXene nanosheets[J].ACS Nano, 2016, 10(3):3334-3341.
[12] Yu Yangxin.Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries[J].the Journal of Physical Chemistry C, 2016, 120(10):5288-5296.
[13] Liang X, Garsuch A, Nazar L F, et al.Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J].Angewandte Chemie International Edition, 2015, 54(13):3907-3911.
[14] Liu Xiaobiao, Shao Xiaofei, Li Feng, et al.Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries:a first-principles study[J].Applied Surface Science, 2018, 455:522-526.
[15] Halim J, Kota S, Lukatskaya M R, et al.Synthesis and characterization of 2D molybdenum carbide (MXene)[J].Advanced Functional Materials, 2016, 26(18):3118-3127.
[16] Rakhi R B, Ahmed B, Hedhili M N, et al.Effect of post-etch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications[J].Chem Mater, 2015, 27(15):5314-5323.
[17] Wu Xianhong, Wang Zhiyu, Yu Mengzhou, et al.Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J].Advanced Materials, 2017, 29(24):1607017.
[18] Ran Jingrun, Gao Guoping, Li Fatang, et al.Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J].Nature Communications, 2017, 8:13907.
[19] Zhao M Q, Ren C E, Zheng L, et al.Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J].Advanced Materials, 2015, 27(2):339-345.
[20] Pan Hong, Huang Xiaoxiao, Zhang Rui, et al.Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery:fast oxidation treatment and enhanced polysulfide adsorption ability[J].Chemical Engineering Journal, 2019, 358:1253-1261.
[21] Zhang Jinqiang, Zhao Yufei, Guo Xin, et al.Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J].Nature Catalysis, 2018, 1(12):985-992.
[22] Lipatov A, Alhabeb M, Lukatskaya M R, et al.Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti32MXene flakes[J].Advanced Electronic Materials, 2016, 2(12):1600255.
[23] Li Tengfei, Yao Lulu, Liu Qinglei, et al.Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J].Angewandte Chemie International Edition, 2018, 57(21):6115-6119.
[24] Yang Sheng, Zhang Panpan, Wang Faxing, et al.Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using abinary aqueous system[J].Angewandte Chemie International Edition, 2018, 57(47):15491-15495.
[25] Yang Chao, Liu Yang, Sun Xuan, et al.In-situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries[J].Electrochimica Acta, 2018, 271:165-172.
[26] Liu Peijiang, Yao Zhengjun, Zhou Jintang, et al.Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance[J].Composites Part A, 2018, 115:371-382.
[27] Liu Fanfan, Liu Yongchang, Zhao Xudong, et al.Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites[J].J Mater Chem A, 2019, 7:16712-16719.
[28] Cao Wentao, Chen Feifei, Zhu Yingjie, et al.Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J].ACS Nano, 2018, 12(5):4583-4593.
[29] Yu Chenyang, Gong Yujiao, Chen Ruyi, et al.A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets[J].Small, 2018, 14(29):1801203.
[30] Levitt A S, Alhabeb M, Hatter C B, et al.Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J].Journal of Materials Chemistry A, 2019, 7:269-277.
[31] Yang Qiuyan, Xu Zhen, Fang Bo, et al.MXene/graphene hybrid fibers for high performance flexible supercapacitors[J].Journal of Materials Chemistry A, 2017, 5(42):22113-22119.
[32] Wu Yuting, Nie Ping, Wu Langyuan, et al.2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J].Chemical Engineering Journal, 2018, 334:932-938.
[33] Wen Y Y, Rufford T E, Chen X Z, et al.Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors[J].Nano Energy, 2017, 38:368-376.
[34] Ai Jinjin, Lei Yike, Yang Shuai, et al.SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries[J].Chemical Engineering Journal, 2019, 357:150-158.
[35] Sun Shuijing, Xie Zhenlang, Yan Yurong, et al.Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries[J].Chemical Engineering Journal, 2019, 366:460-467.
[36] Zhao M Q, Xie X Q, Ren C E, et al.Hollow MXene spheres and macroporous MXene frameworks for Na-ion storage[J].Advanced Materials, 2017, 29(37):1702410.
[37] Guo Xin, Xie Xiuqiang, Choi Sinho, et al.Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J].Journal of Materials Chemistry A, 2017, 5(24):12445-12452.
[38] Zhang Yelong, Mu Zijie, Yang Chao, et al.Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries[J].Advanced Functional Materials, 2018, 28(38):1707578.
[39] Bao Weizhai, Liu Lin, Wang Chengyin, et al.Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries[J].Advanced Energy Materials, 2018, 8(13):1702485.
Options
Outlines

/