[1] Ding Li, Wei Yanying, Wang Yanjie, et al.A two-dimensional lamellar membrane:MXene nanosheet stacks[J].Angewandte Chemie International Edition, 2017, 56(7):1825-1829.
[2] Dall'Agnese Y, Rozier P, Taberna P L, et al.Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes[J].Journal of Power Sources, 2016, 306:510.
[3] Lukatskaya M R, Kota S, Lin Z F, et al.Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J].Nature Energy, 2017, 2(8):17105.
[4] Anasori Babak, Lukatskaya M R, Gogotsi Y, et al.2D metal carbides and nitrides (MXenes) for energy storage[J].Nature Reviews Materials, 2017, 2(2):34-50.
[5] Zhan Cheng, Naguib Michael, Lukatskaya M, et al.Understanding the MXene pseudocapacitance[J].the Journal of Physical Chemistry Letters, 2018, 9(6):1223-1228.
[6] Kim H, Anasori B, Gogotsi Y, et al.Thermoelectric properties of two-dimensional molybdenum-based MXenes[J].Chemistry of Materials, 2017, 29(15):6472-6479.
[7] Luo Jianmin, Tao Xinyong, Zhang Jun, et al.Sn4+ ion decorated highly conductive Ti3C2 MXene:promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J].ACS Nano, 2016, 10(2):2491-2499.
[8] Huang Jimei, Meng Ruijin, Zu Lianhai, et al.Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries[J].Nano Energy, 2018, 46:20-28.
[9] Ren C E, Zhao M Q, Makaryan T, et al.Porous two-dimensional transition metal carbide (MXene) flakes for high-performance li-ion storge[J].Chem Electro Chem, 2016, 3(5):689-693.
[10] Mashtalir O, Lukatskaya M R, Zhao M Q, et al.Amine-assisted delamination of Nb2C MXene for li-ion energy storage devices[J].Advanced Materials, 2015, 27(23):3501-3506.
[11] Kajiyama S, Szabova L, Sodeyama K, et al.Sodium-ion intercalation mechanism in MXene nanosheets[J].ACS Nano, 2016, 10(3):3334-3341.
[12] Yu Yangxin.Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries[J].the Journal of Physical Chemistry C, 2016, 120(10):5288-5296.
[13] Liang X, Garsuch A, Nazar L F, et al.Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J].Angewandte Chemie International Edition, 2015, 54(13):3907-3911.
[14] Liu Xiaobiao, Shao Xiaofei, Li Feng, et al.Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries:a first-principles study[J].Applied Surface Science, 2018, 455:522-526.
[15] Halim J, Kota S, Lukatskaya M R, et al.Synthesis and characterization of 2D molybdenum carbide (MXene)[J].Advanced Functional Materials, 2016, 26(18):3118-3127.
[16] Rakhi R B, Ahmed B, Hedhili M N, et al.Effect of post-etch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications[J].Chem Mater, 2015, 27(15):5314-5323.
[17] Wu Xianhong, Wang Zhiyu, Yu Mengzhou, et al.Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J].Advanced Materials, 2017, 29(24):1607017.
[18] Ran Jingrun, Gao Guoping, Li Fatang, et al.Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J].Nature Communications, 2017, 8:13907.
[19] Zhao M Q, Ren C E, Zheng L, et al.Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J].Advanced Materials, 2015, 27(2):339-345.
[20] Pan Hong, Huang Xiaoxiao, Zhang Rui, et al.Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery:fast oxidation treatment and enhanced polysulfide adsorption ability[J].Chemical Engineering Journal, 2019, 358:1253-1261.
[21] Zhang Jinqiang, Zhao Yufei, Guo Xin, et al.Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J].Nature Catalysis, 2018, 1(12):985-992.
[22] Lipatov A, Alhabeb M, Lukatskaya M R, et al.Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti32MXene flakes[J].Advanced Electronic Materials, 2016, 2(12):1600255.
[23] Li Tengfei, Yao Lulu, Liu Qinglei, et al.Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J].Angewandte Chemie International Edition, 2018, 57(21):6115-6119.
[24] Yang Sheng, Zhang Panpan, Wang Faxing, et al.Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using abinary aqueous system[J].Angewandte Chemie International Edition, 2018, 57(47):15491-15495.
[25] Yang Chao, Liu Yang, Sun Xuan, et al.In-situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries[J].Electrochimica Acta, 2018, 271:165-172.
[26] Liu Peijiang, Yao Zhengjun, Zhou Jintang, et al.Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance[J].Composites Part A, 2018, 115:371-382.
[27] Liu Fanfan, Liu Yongchang, Zhao Xudong, et al.Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites[J].J Mater Chem A, 2019, 7:16712-16719.
[28] Cao Wentao, Chen Feifei, Zhu Yingjie, et al.Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J].ACS Nano, 2018, 12(5):4583-4593.
[29] Yu Chenyang, Gong Yujiao, Chen Ruyi, et al.A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets[J].Small, 2018, 14(29):1801203.
[30] Levitt A S, Alhabeb M, Hatter C B, et al.Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J].Journal of Materials Chemistry A, 2019, 7:269-277.
[31] Yang Qiuyan, Xu Zhen, Fang Bo, et al.MXene/graphene hybrid fibers for high performance flexible supercapacitors[J].Journal of Materials Chemistry A, 2017, 5(42):22113-22119.
[32] Wu Yuting, Nie Ping, Wu Langyuan, et al.2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J].Chemical Engineering Journal, 2018, 334:932-938.
[33] Wen Y Y, Rufford T E, Chen X Z, et al.Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors[J].Nano Energy, 2017, 38:368-376.
[34] Ai Jinjin, Lei Yike, Yang Shuai, et al.SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries[J].Chemical Engineering Journal, 2019, 357:150-158.
[35] Sun Shuijing, Xie Zhenlang, Yan Yurong, et al.Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries[J].Chemical Engineering Journal, 2019, 366:460-467.
[36] Zhao M Q, Xie X Q, Ren C E, et al.Hollow MXene spheres and macroporous MXene frameworks for Na-ion storage[J].Advanced Materials, 2017, 29(37):1702410.
[37] Guo Xin, Xie Xiuqiang, Choi Sinho, et al.Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries[J].Journal of Materials Chemistry A, 2017, 5(24):12445-12452.
[38] Zhang Yelong, Mu Zijie, Yang Chao, et al.Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries[J].Advanced Functional Materials, 2018, 28(38):1707578.
[39] Bao Weizhai, Liu Lin, Wang Chengyin, et al.Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries[J].Advanced Energy Materials, 2018, 8(13):1702485.