Preparation and adsorption property of Fe3O4@SiO2@EDTA magnetic composite microsphere

Expand
  • Shengli College,China University of Petroleum,Dongying 257061

Received date: 2019-06-08

  Revised date: 2020-06-03

  Online published: 2020-10-20

Abstract

Fe3O4 magnetic nanoparticles were prepared by chemical coprecipitation method using FeCl2·4H2O and FeCl3·6H2O as raw materials.Fe3O4@SiO2 composite particles were successfully prepared by hydrolysis and polycondensation of tetraethyl orthosilicat using Stöber method.Finally,the chelating agent EDTA was bonded to the surface of the particles by the polycondensation reaction of amino group and carboxyl group.Fe3O4@SiO2@EDTA magnetic composite microspheres were characterized by IR,TG,LPSA and SEM.The adsorption properties of the microspheres were studied.The results shown that the equilibrium adsorption capacity of Fe3O4@SiO2@EDTA to Mn7+ reached 11.85mg/g.The equilibrium adsorption amount to Cr6+ reached 8.0mg/g.The heavy metal ions in the aqueous solution can be effectively removed,and can be separated magnetically.At the same time,the adsorption kinetic model showed that it accorded with the quasi-secondary kinetic model,and the adsorption isotherm model accorded with the Langmuir adsorption model.

Cite this article

Zhang Chunxiao, Zhang Teng, Qin Sichao, Ma Yanmei . Preparation and adsorption property of Fe3O4@SiO2@EDTA magnetic composite microsphere[J]. New Chemical Materials, 2020 , 48(9) : 196 -201 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.09.043

References

[1] Cannas C,Urdu A,Peddis D,et al.Surfactant-assisted route to fabricate CoFe2O4 individual nanoparticles and spherical assembiles[J].Journal of Colloid and Interface Science,2010,343(2):415-422.
[2] Bourlinos A B,Bakandritsos A,Georgalilas V,et al.Surface modification of ultrafine magnetic iron oxide particles[J].Chem Mater,2002,4(14):3226-3228.
[3] Liu Q,Xu Z.Self-assembled monolayer coatings on nanosized magnetic particles using 6-mercaptohexadexanoic acid[J].Langmuir,1995,11(12):4617-4622.
[4] Tie S L,Lee H C,Bae Y S,et al.Monodisperse Fe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property[J].Colloids and Surfaces A:Physicochem Eng Aspeces,2007,293(1-3):278-285.
[5] Wang Y,Teng X,Wang J S,et al.Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3 polystyrenecore-shell nanoparticles[J].Nano Lett,2003,3(6):789-793.
[6] Tan Lisha,Sun Mingyang,Hu Yunjun.et al.preparation of functionalized Fe3O4 nanoparticles and removal of heavy metal in water[J].Progress in Chemistry,2013,25(12):2148-2155.
[7] Wang J H,Zheng S R,Shao Y,et al.Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal[J].Journal of Colloid & Interface Science,2010,349(1):393-399.
[8] Cui S,Shen X D,Len B L.Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents[J].Rare Metals,2006,25(6):426-430.
[9] Yen S P S,Rembaum A,Landel R F.Functional magnetic microspheres:US4285819[P].1981-08-25.
[10] Tai Yulei,Wang Li,Dao Jingmin,et al.Synthesis of Fe3O4@poly (methylmethacrylate-co-divinylbenzene) magnetic porous microspheres and their application in the separation of phenolfrom aqueous solutions[J].Journal of Colloid and Interface Science,2011,360(2):731-738.
[11] 宋振岚.免疫磁珠与激活的单核一巨噬细胞对白血病细胞体外净化作用的研究[J].中华血液学杂志,1996,20(6):320-321.
[12] Odabasi M,Denizli A.Cibacron blue F3GA-attached magnetic poly(2-hydroxyethyl methacrylate) beads for human serum albumin adsorption[J].Polymer International,2004,53(3):332-338.
[13] Gong J L,Wang B,Zeng G M,et al.Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent[J].Journal of Hazardous Materials,2009,164(2/3):1517-1522.
[14] Yener J,Kopac T,Dogu G,et al.Dynamic analysis of sorption of methylene blue dye on granular and powdered activated carbon[J].Chemical Engineering Journal,2008,144(3):400-406.
[15] Farzad Z,Elham I.Polyvinyl amine coated Fe3O4@SiO2 magnetic microspheres for knoevenagel condensation[J].Chinese Journal of Cataiysis,2014,35(1):21-27.
Options
Outlines

/