[1] 黄耿华.印染需加快自身转型升级[J].中国纺织,2012(3):14-15.
[2] 林青雯,赵琪,高梦凡,等.Fe3O4/纤维素纳米复合材料的制备及其对亚甲基蓝的吸附[J].环境工程学报,2016,10(11):6451-6456.
[3] 梁波,关杰.吸附法处理亚甲基蓝研究[J].工业用水与废水,2015,45(1):6-11.
[4] 王九思,韩相恩,赵红花.絮凝沉淀—Fenton氧化法处理印染废水[J].兰州交通大学学报,2001,20(6):68-71.
[5] 潘洁,沈聪,李琴,等.微波协同铁屑内电解处理亚甲基蓝染料废水[J].应用化工,2006,35(9):656-658.
[6] Habisreutinger S N,Schmidt-Mende L,Stolarczyk J K.Photocatalytic reduction of CO2 on TiO2 and other[J].Angewandte Chemie-International Edition,2013,52(39):7372-7408.
[7] Zong X,Yan H J,Wu G P,et al.Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J].Journal of the American Chemical Society,2008,1330(23):7176-7178.
[8] Ran J R,Zhang J,Yu J G,et al.Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J].Chemical Society Reciews,2014,43(22):7787-7812.
[9] Amilcar M,Renato D,Jaime G,et al.Environmental applications of semiconductor photocatalysis for reducing pollution[J].Environmental Science and Engineering,2017,10:159-192.
[10] Lu S S,Li J,Duan F,et al.One-step preparation of Bi4O5BrxI2-x solid solution with superior photocatalytic performance for organic pollutants degradation under visible light[J].Applied Surface Science,2019,475:577-586.
[11] 李阳.钒酸铋基复合光催化材料的制备及光催化性能研究[D].广东:华南理工大学,2018.
[12] Subramanyam P,Vinodkumar T,Nepak D,et al.Mo-doped BiVO4@reduced graphene oxide composite as an efficient photoanode for photoelectrochemical water splitting[J].Catalysis Today,2019,325:73-80.
[13] Wang M,Liu Q,Che Y S,et al.Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol-gel method[J].Journal of Alloys and Compounds,2012,548:70-76.
[14] Zhou F Q,Fan J C,Xu Q J,et al.BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation[J].Applied Catalysis B:Environmental,2017,201:77-83.
[15] Li S,Pan J Q,Li H L,et al.The transparent SnO/ZnO quantum dots/SnO2 p-n junction towards the enhancement of photovoltaic conversion[J].Chemical Engineering Journal,2019,366:305-312.
[16] Wang Y Q,Lu N,Luo M,et al.Enhancement mechanism of fiddlehead-shaped TiO2-BiVO4 type Ⅱ heterojunction in SPEC towards RhB degradation and detoxification[J].Applied Surface Science,2019,463:234-243.
[17] 陈海锋,潘国祥,徐敏虹.酞菁钴敏化BiVO4光催化剂的超声化学法制备与光催化性能[C].重庆:第七届中国功能材料及其应用学术会议,2010.
[18] Li C J,Wang S P,Wang T,et al.Monoclinic porous BiVO4 networks decorated by discrete g-C3N4 nano-islands with tunable coverage for highly efficient photocatalysis[J].Small,2014,10(14):2783-2790.
[19] Chen X B,Liu L,Yu P Y,et al.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J].Science,2011,331:746-750.
[20] Wang Y,Wang X C,Antonietti M.Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:from photochemistry to multipurpose catalysis to sustainable chemistry[J].Angewandte Chemie-International Edition,2012,51(1):68-89.
[21] Dong F,Wu L W,Sun Y J,et al.Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J].Journal of Materials Chemistry,2011,21(39):15171-15174.
[22] Dong F,Wang Z Y,Sun Y J,et al.Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity[J].Journal of Colloid and Interface Science,2013,401:70-79.
[23] Sathyaseelan B,Manikandan E,Sivakumar K,et al.Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application[J].Journal of Alloys and Compounds,2015,651:479-482.
[24] Magdalane C M,Kaviyarasu K,Raja A,et al.Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation:investigation of cytotoxicity,antibacterial growth inhibition using catalyst[J].Journal of Photochemistry and Photobiology B:Biology,2018,185:275-282.
[25] 陈永刚.异质结构TiO2光催化剂的研析[D].济南:山东轻工业学院,2010.
[26] Zhou B,Zhao X,Liu H J,et al.Visible-light sensitive cobalt doped BiVO4(Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions[J].Applied Catalysis B:Environmental,2010,99:214-221.
[27] Magdalane C M,Kaviyarasu K,Matinise N,et al.Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/visible light induced removal of organic dye from urban wastewater[J].South African Journal of Chemical Engineering,2018,26:49-60.
[28] 张进.水热法制备钒酸铋及可见光催化降解亚甲基蓝溶液研究[J].广东化学,2012,39(17):34-35.
[29] Ma S,Li R,Lv C,et al.Facile synthesis of ZnO nanorod arrays and hierarchical for photocatalysis and gas sensor applications[J].Journal of Hazardous Materials,2011,192(2):730-740.
[30] Zhang Y,Zhang X T,Wang D,et al.Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer[J].Applied Surface Science,2017,403:389-395.
[31] Niu F,Chen D,Qin L S,et al.Synthesis of Pt/BiFeO3 heterostructured photocatalysts for highly efficient visible-light photocatalytic performances[J].Solar Energy Materials & Solar Cells,2015,143:386-396.
[32] Tian N,Huang H W,He Y,et al.Mediator-free direct Z-scheme photocatalytic system:BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity[J].Dalton Transactions,2015,44(9):4297-4307.
[33] Harrington D A,Van den Driessche P.Mechanism and equivalent circuits in electrochemical impedance spectroscopy[J].Electrochimica Acta,2011,56:8005-8013.
[34] Parmar K P S,Kang H J,Bist A,et al.Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes[J].ChemSusChem,2012,55:1926-1934.
[35] Zalfani M,Mahdouani M,Bourguiga R,et al.Experimental and theoretical study of optical properties and quantum size phenomena in the BiVO4/TiO2 nanostructures[J].Superlattice Microstruct,2015,83:730-744.