On-line preparation and creep resistance of silane crosslinked UHMWPE fibers

  • Tao Dechang ,
  • Wen Xin ,
  • Yan Kun ,
  • Yang Chengguang ,
  • Wang Wenwen ,
  • Wang Dong
Expand
  • 1. Key Laboratory of Textile Fiber and Products,Ministry of Education,Wuhan Textile University,Wuhan 430200;
    2. Donghua University Textile Science and Technology Innovation Center,Shanghai 200051

Received date: 2024-05-20

  Revised date: 2024-11-28

  Online published: 2025-05-21

Abstract

Silane coupling agent KH-590 crosslinked ultrahigh molecular weight polyethylene (UHMWPE) composite fibers were prepared by gel spinning process,then the changes in crystalline behavior,mechanical properties,creep resistance,and microstructure of ultra-high molecular weight polyethylene (UHMWPE) fibers before and after modification were investigated,and the relationship between the silane coupling agent and the creep resistance of the composite fibers was systematically explored.The results indicated that when the KH-590 content was 2%,the gel content of UHMWPE fibers reached a basic saturation.After crosslinking with KH-590,the creep resistance of the samples was significantly improved,with the optimal creep resistance of UHMWPE observed at a KH-590 content of 2%.With the increases of molecular weight and coupling agent content,the crystallinity,thermal stability,and gel content of UHMWPE fibers were significantly enhanced.This study provides an experimental basis for the modification method of the creep resistance of UHMWPE fibers,which is expected to provide a reference for the preparation of high creep-resistant UHMWPE composite fibers.

Cite this article

Tao Dechang , Wen Xin , Yan Kun , Yang Chengguang , Wang Wenwen , Wang Dong . On-line preparation and creep resistance of silane crosslinked UHMWPE fibers[J]. New Chemical Materials, 2025 , 53(5) : 83 -89 . DOI: 10.19817/j.cnki.issn1006-3536.2025.05.044

References

[1] Mehelli O,Derradji M,Belgacemi R,et al.Development of lightweight and highly efficient fast neutrons composites shields based on epoxy,UHMWPE fibres and boron carbide particles[J].Radiation Physics and Chemistry,2022,193:109510.
[2] Tian Y,Zhu C,Gong J,et al.Lamellae break induced formation of shish-kebab during hot stretching of ultra-high molecular weight polyethylene precursor fibers investigated by in situ small angle X-ray scattering[J].Polymer,2014,55(16):4299-4306.
[3] Grupp T M,Holderied M,Mulliez M A,et al.Biotribology of a vitamin E-stabilized polyethylene for hip arthroplasty-influence of artificial ageing and third-body particles on wear[J].Acta Biomater,2014,10(7):3068-3078.
[4] Sa R,Wei Z,Yan Y,et al.Catechol and epoxy functionalized ultrahigh molecular weight polyethylene (UHMWPE) fibers with improved surface activity and interfacial adhesion[J].Composites Science and Technology,2015,113:54-62.
[5] Martínez-Morlanes M J,Pascual F J,Guerin G,et al.Influence of processing conditions on microstructural,mechanical and tribological properties of graphene nanoplatelet reinforced UHMWPE[J].Journal of the Mechanical Behavior of Biomedical Materials,2021,115:104248.
[6] Yang C,Yan K,Wen X,et al.Radiation grafting assisted preparation of layered structure polypropylene foam with superthermal insulation and hydrophobic properties via a supercritical CO2 batch foaming process[J].Industrial & Engineering Chemistry Research,2021,60(10):3799-3808.
[7] 文鑫,严坤,李雪丽,等.辐射交联超高分子量聚乙烯热稳定性及蠕变性能[J].辐射研究与辐射工艺学报,2022,40(1):42-50.
[8] 展晓晴,李凤艳,赵健,等.超高分子量聚乙烯纤维的热力学稳定性能[J].纺织学报,2020,41(8):9-14.
[9] Zhao Y,Wang M,Tang Z,et al.Radiation effects of UHMW-PE fibre on gel fraction and mechanical properties[J].Industrial & Engineering Chemistry Research,2011,80(2):274-277.
[10] Kondo Y,Miyazaki K,Yamaguchi Y,et al.Mechanical properties of fiber reinforced styrene-butadiene rubbers using surface-modified UHMWPE fibers under EB irradiation[J].European Polymer Journal,2006,42(5):1008-1014.
[11] Hyun Kang P.The effect of γ-irradiation on ultra-high molecular weight polyethylene recrystallized under different cooling conditions[J].Radiation Physics and Chemistry,2001,60(1-2):79-87.
[12] 李志尧,严坤,王雯雯,等.紫外辐照对芳纶纤维结构与性能的影响[J].辐射研究与辐射工艺学报,2024,42(3):030201-030208.
[13] 文鑫,王小俊,严坤,等.辐射技术在超临界二氧化碳发泡聚丙烯中的应用[C].山东烟台:中国核学会2021年学术会,2021.
[14] 文鑫,严坤,李雪丽,等.辐射交联超高分子量聚乙烯热稳定性及蠕变性能[J].辐射研究与辐射工艺学报,2022,40(1):42-50.
[15] Yang C,Tao D,Yan K,et al.A scalable versatile methodology to construct micro/nano open-cell polypropylene foam with high oil adsorption capacity and speed[J].Nano Research,2023,17(4):2814-2823.
[16] 陶德昌,文鑫,李雪丽,等.超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J].材料导报,2024,38(14):23030255.
[17] 王洪龙.超高分子量聚乙烯辐射效应与改性研究[D].上海:中国科学院研究生院(上海应用物理研究所),2017.
[18] 邵钰淞.抗蠕变超高分子量聚乙烯纤维的研制[D].上海:东华大学,2018.
[19] 袁月.物理填充和化学交联的超高分子量聚乙烯复合材料及其摩擦学性能[D].扬州:扬州大学,2016.
[20] 李志尧,文鑫,杨晨光,等.表面具有交联结构的UHMWPE纤维的制备及抗蠕变性能研究[J].材料导报,2023,37(21):283-288.
[21] Kong W L,Bao J B,Wang J,et al.Preparation of open-cell polymer foams by CO2 assisted foaming of polymer blends[J].Polymer,2016,90:331-341.
[22] Wang K,Liu M,Song C,et al.Surface-conductive UHMWPE fibres via in situ reduction and deposition of graphene oxide[J].Materials & Design,2018,148:167-176.
[23] Wang Q,Wang H,Wang Y,et al.The influences of several carbon additions on the fretting wear behaviors of UHMWPE composites[J].Tribology International,2016,93:390-398.
[24] Wei J,Sun L,Pan W.Study on the interfacial properties of bi-material structures manufactured by injection molding after compression[J].Composite Structures,2023,309:116740.
[25] Wu S L,Qiao J,Guan J,et al.Nascent disentangled UHMWPE:origin,synthesis,processing,performances and applications[J].European Polymer Journal,2023,184:111799.
[26] Yin H,Wang Q,Chen G.Probing the growth mechanism of PbTe hopper-like crystal and ultra-long nanowires with rough surface synthesized through acetone-assisted solvothermal method[J].Chemical Engineering Journal,2014,236:131-138.
[27] Choi M S,Jeon E B,Kim J Y,et al.Impact of non-thermal dielectric barrier discharge plasma on staphylococcus aureus and bacillus cereus and quality of dried blackmouth angler (Lophiomus setigerus)[J].Journal of Food Engineering,2020,278:109952.
[28] Hao X,Xian C,Wang H,et al.Preparation of ultra-high molecular weight polyethylene (UHMWPE) fiber copper(Ⅱ) ions adsorbent by radiation grafting[J].Journal of Radioanalytical and Nuclear Chemistry,2022,331(12):5569-5577.
[29] Yun J H,Jeon Y J,Kang M S.Numerical investigation of the elastic properties of polypropylene/ultra high molecular weight polyethylene fiber inside a composite material based on its aspect ratio and volume fraction[J].Polymers,2022,14(22):4851.
[30] Jacobs C A M,Cramer E E A,Dias A A,et al.Surface modifications to promote the osteoconductivity of ultra-high-molecular-weight-polyethylene fabrics for a novel biomimetic artificial disc prosthesis:an in vitro study[J].Journal of Biomedical Materials Research Part B,2022,111(2):442-452.
[31] Rajab M,Mougin K,Derivaz M,et al.Controlling shape and spatial organization of silver crystals by site-selective chemical growth method for improving surface enhanced Raman scattering activity[J].Colloids and Surfaces A,2015,484:508-517.
[32] 董天泓,王新鹏,郭俊谷,等.UHMWPE纤维抗蠕变改性的研究进展[J].合成纤维,2023,52(1):13-19.
[33] 刘海,周玉惠,胡晓方,等.凝胶纺丝法制备超高分子量聚乙烯纤维延伸性能的研究[J].胶体与聚合物,2008(1):20-22.
[34] 王初红,罗文波,赵荣国,等.非线性粘弹性高分子材料长期蠕变行为的加速测试技术[J].高分子材料科学与工程,2007(2):218-221,226.
Options
Outlines

/