[1] Ghasemi H,Ni G,Marconnet A M,et al.Solar steam generation by heat localization[J].Nature Communications,2014,5(1):1-7.
[2] Naminezhad A,Mehregan M.Energy and exergy analyses of a hybrid system integrating solar-driven organic rankine cycle,multi-effect distillation,and reverse osmosis desalination systems[J].Renewable Energy,2022,185:888-903.
[3] Palenzuela P,Alarcón-Padilla D C,Ortega-Delgado B,et al.Cogeneration of fresh water and electricity with high-tempe-rature power cycles:comparative assessment of multi-effect distillation and reverse osmosis[J].Processes,2023,11(4):1181.
[4] Al-Amshawee S,Yunus M Y B M,Azoddein A A M,et al.Electrodialysis desalination for water and wastewater:a review[J].Chemical Engineering Journal,2020,380:122231.
[5] Suga Y,Takagi R,Matsuyama H.Effect of hollow fiber membrane properties and operating conditions on preventing scale precipitation in seawater desalination with vacuum membrane distillation[J].Desalination,2022,527:115578.
[6] Janajreh I,Zhang H,El Kadi K,et al.Freeze desalination:current research development and future prospects[J].Water Research,2023,229:119389.
[7] Kalista B,Shin H,Cho J,et al.Current development and future prospect review of freeze desalination[J].Desalination,2018,447:167-181.
[8] Ye B,Liu H,Ye M,et al.Seawater desalination using the microbial electrolysis desalination and chemical-production cell with monovalent selective cation exchange membrane[J].Desalination,2022,523:115394.
[9] Tao P,Ni G,Song C,et al.Solar-driven interfacial evaporation[J].Nature Energy,2018,3(12):1031-1041.
[10] Ibrahim I,Seo D H,Park M J,et al.Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment[J].Chemosphere,2022,299:134394.
[11] Fu Y,Mei T,Wang G,et al.Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids[J].Applied Thermal Engineering,2017,114:961-968.
[12] Zhu M,Li Y,Chen F,et al.Plasmonic wood for high-efficiency solar steam generation[J].Advanced Energy Materials,2018,8(4):1701028.
[13] Chen M,He Y,Huang J,et al.Synthesis and solar photo-thermal conversion of Au,Ag,and Au-Ag blended plasmonic na-noparticles[J].Energy Conversion and Management,2016,127:293-300.
[14] Sun W,Zhong G,Kübel C,et al.Size-tunable photothermal germanium nanocrystals[J].Angewandte Chemie International Edition,2017,56(22):6329-6334.
[15] Zhou L,Tan Y,Wang J,et al.3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J].Nature Photonics,2016,10(6):393-398.
[16] Wang J,Li Y,Deng L,et al.High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J].Advanced Materials,2017,29(3):1603730.
[17] Khanchandani S,Kumar S,Ganguli A K.Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis[J].ACS Sustainable Chemistry & Engineering,2016,4(3):1487-1499.
[18] Chen R,Wu Z,Zhang T,et al.Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating[J].RSC Advances,2017,7(32):19849-19855.
[19] Chen Y,Zhao G,Ren L,et al.Blackbody-inspired array structural polypyrrole-sunflower disc with extremely high light absorption for efficient photothermal evaporation[J].ACS Applied Materials & Interfaces,2020,12(41):46653-46660.
[20] He J,Liu F,Xiao C,et al.Fe3O4/PPy-coated superhydrophilic polymer porous foam:a double layered photothermal material with a synergistic light-to-thermal conversion effect toward desalination[J].Langmuir,2021,37(42):12397-12408.
[21] Song R,Zhang N,Wang P,et al.A self-floating Janus PPy@Ni sponge salt-resisting solar evaporator for efficient interfacial evaporation[J].Applied Surface Science,2023,616:156448.
[22] Li T,Fang Q,Wang J,et al.Exceptional interfacial solar eva-poration via heteromorphic PTFE/CNT hollow fiber arrays[J].Journal of Materials Chemistry A,2021,9(1):390-399.
[23] Dong S,Zhao Y,Yang J,et al.Solar water recycling of carbonaceous aerogel in open and colsed systems for seawater desalination and wastewater purification[J].Chemical Engineering Journal,2022,431:133824.
[24] Hu X,Xu W,Zhou L,et al.Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J].Advanced Materials,2017,29(5):1604031.
[25] Li L,Hu T,Li A,et al.Electrically conductive carbon aerogels with high salt-resistance for efficient solar-driven interfacial evaporation[J].ACS Applied Materials & Interfaces,2020,12(28):32143-32153.
[26] Gan Z,Zhao S,Zhang Z,et al.Hierarchically porous and high-strength carbon aerogel-based composite for solar-driven interfacial evaporation[J].Journal of Sol-Gel Science and Technology,2023,107(2):388-400.
[27] Ghasemi H,Ward C A.Energy transport by thermocapillary convection during sessile-water-droplet evaporation[J].Physical Review Letters,2010,105(13):136102.
[28] Lim H W,Lee H S,Lee S J.Laminated chitosan/graphene nanoplatelets aerogel for 3D interfacial solar desalination with harnessing wind energy[J].Chemical Engineering Journal,2024,480:148197.
[29] Li Y,Shi Y,Wang H,et al.Recent advances in carbon-based materials for solar-driven interfacial photothermal conversion water evaporation:assemblies,structures,applications,and prospective[J].Carbon Energy,2023,5(11):331.
[30] Chen C,Kuang Y,Hu L.Challenges and opportunities for solar evaporation[J].Joule,2019,3(3):683-718.
[31] Zhou L,Tan Y,Ji D,et al.Self-assembly of highly efficient,broadband plasmonic absorbers for solar steam generation[J].Science Advances,2016,2(4):1501227.
[32] Sun Z,Wang J,Wu Q,et al.Plasmon based double-layer hydrogel device for a highly efficient solar vapor generation[J].Advanced Functional Materials,2019,29(29):1901312.
[33] Huang W,Su P,Cao Y,et al.Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multifunctional solar distillation[J].Nano Energy,2020,69:104465.
[34] Dong S,Zhao Y,Yang J,et al.Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation[J].Applied Catalysis B:Environmental,2021,291:120127.
[35] Zuo S,Xia D,Guan Z,et al.Dual-functional CuO/CN for highly efficient solar evaporation and water purification[J].Separation and Purification Technology,2021,254:117611.
[36] Liu J,Liu Q,Ma D,et al.Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation[J].Journal of Materials Chemistry A,2019,7(15):9034-9039.
[37] Liu G,Xu J,Wang K.Solar water evaporation by black photothermal sheets[J].Nano Energy,2017,41:269-284.
[38] Li T,Fang Q,Xi X,et al.Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J].Journal of Materials Chemistry A,2019,7(2):586-593.
[39] Chen H,Shao L,Ming T,et al.Understanding the photothermal conversion efficiency of gold nanocrystals[J].Small,2010,6(20):2272-2280.
[40] Shin H H,Koo J J,Lee K S,et al.Chemical reactions driven by plasmon-induced hot carriers[J].Applied Materials Today,2019,16:112-119.
[41] Liu J G,Zhang H,Link S,et al.Relaxation of plasmon-induced hot carriers[J].ACS Photonics,2017,5(7):2584-2595.
[42] Brongersma M L,Halas N J,Nordlander P.Plasmon-induced hot carrier science and technology[J].Nature Nanotechnology,2015,10(1):25-34.
[43] Wang J,Li Y,Deng L,et al.High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J].Advanced Materials,2017,29(3):1603730.
[44] Vélez-Cordero J R,Hernandez-Cordero J.Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers[J].International Journal of Thermal Sciences,2015,96:12-22.
[45] Gao M,Zhu L,Peh C K,et al.Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J].Energy & Environmental Science,2019,12(3):841-864.
[46] Li X,Li J,Lu J,et al.Enhancement of interfacial solar vapor generation by environmental energy[J].Joule,2018,2(7):1331-1338.
[47] Lu Q,Shi W,Yang H,et al.Nanoconfined water-molecule channels for high-yield solar vapor generation under weaker sunlight[J].Advanced Materials,2020,32(42):2001544.
[48] Gao X,Ren H,Zhou J,et al.Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation[J].Chemistry of Materials,2017,29(14):5777-5781.
[49] Li X,Xu W,Tang M,et al.Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J].Proceedings of the National Academy of Sciences,2016,113(49):13953-13958.
[50] 桂岩,赵爽,杨自春.3D打印隔热材料研究进展[J].材料导报,2024(8):124-134.
[51] Li Y,Gao T,Yang Z,et al.3D-printed,all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination[J].Advanced Materials,2017,29(26):1700981.
[52] Guan Q F,Yang H B,Han Z M,et al.Sustainable cellulose-nanofiber-based hydrogels[J].ACS Nano,2021,15(5):7889-7898.
[53] Li J,Wang X,Lin Z,et al.Over 10kg·m-2·h-1 evaporation rate enabled by a 3D interconnected porous carbon foam[J].Joule,2020,4(4):928-937.
[54] Hu X,Zhu J.Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation[J].Advanced Functional Materials,2020,30(3):1907234.
[55] Zhang Q,Li L,Jiang B,et al.Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination[J].ACS Applied Materials & Interfaces,2020,12(25):28179-28187.
[56] Wang H,Du A,Ji X,et al.Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation[J].ACS Applied Materials & Interfaces,2019,11(45):42057-42065.
[57] Hu X,Xu W,Zhou L,et al.Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J].Advanced Materials,2017,29(5):1604031.
[58] Casagrande C,Fabre P,Raphael E,et al.“Janus beads”:realization and behaviour at water/oil interfaces[J].Europhysics Letters,1989,9(3):251.
[59] Peng F,Xu J,Bai X,et al.A janus solar evaporator with 2D water path for highly efficient salt-resisting solar steam ge-neration[J].Solar Energy Materials and Solar Cells,2021,221:110910.
[60] Qin Z,Sun H,Tang Y,et al.Bioinspired hydrophilic-hydrophobic Janus composites for highly efficient solar steam ge-neration[J].ACS Applied Materials & Interfaces,2021,13(16):19467-19475.
[61] Dong S,Zhao Y,Yang J,et al.Solar water recycling of carbonaceous aerogel in open and colsed systems for seawater desalination and wastewater purification[J].Chemical Engineering Journal,2022,431:133824.
[62] Li L,Hu T,Li A,et al.Electrically conductive carbon aerogels with high salt-resistance for efficient solar-driven interfacial evaporation[J].ACS Applied Materials & Interfaces,2020,12(28):32143-32153.
[63] Gan Z,Yang Z,Zhang Z,et al.Low-density,high-strength and large-scaled monolithic carbon aerogels fabricated via modified ambient pressure drying[J].Journal of Materials Science,2023,58(7):3038-3052.