Advance in crystal size and morphology regulation and applications of metal-organic framework materials

Expand
  • 1. Sinopec Research Institute of Petroleum Processing Co.,Ltd.,Beijing 100083;
    2. National Engineering Research Center for Petroleum Refining Technology and Catalyst,Beijing 102299

Received date: 2023-09-22

  Revised date: 2024-01-09

  Online published: 2024-05-07

Abstract

Metal-organic frameworks (MOFs) are an advanced class of organic-inorganic hybrid porous materials.The differences in particle sizes and morphologies affect specific surface area,types and quantities of active sites,which change several physicochemical properties of MOFs,including catalytic activity,adsorption capacity,or electrochemical properties.In this review,the effects of regulators,synthetic parameters and external field enhancement on the particle size of MOFs were firstly discussed.Subsequently,from the perspective of MOFs material dimensions,the morphology control methods of MOFs were introduced while the differences in regulatory mechanisms were analyzed simultaneously.Furthermore,this paper summarized the positive effects of particle size and morphology regulation of MOFs on their applications in separation,catalysis,and electrochemistry.This paper proposed that the future precise preparation technology of MOFs should be universal,cost-effective,stable,safe and environmentally friendly.

Cite this article

Ding Juncheng, Ren Zhongyuan, Zhu Zhenxing, Wang Zijun . Advance in crystal size and morphology regulation and applications of metal-organic framework materials[J]. New Chemical Materials, 2024 , 52(4) : 58 -64 . DOI: 10.19817/j.cnki.issn1006-3536.2024.04.042

References

[1] Ockwig N W,Delgado-friedrichs O,O'keeffe M,et al.Reticular chemistry:occurrence and taxonomy of nets and grammar for the design of frameworks[J].Accounts of Chemical Research,2005,38(3):176-182.
[2] 毛祖兴,戴宏,李肖敏,等.自支撑Ni-MOF-74材料的形貌调控[J].广东化工,2021,48(22):22-23,56.
[3] Biemmi E,Christian S,Stock N,et al.High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1[J].Micropor Mesopor Mater,2009,117(1-2):111-117.
[4] Pan Y,Heryadi D,Zhou F,et al.Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants[J].CrystEngComm,2011,13(23):6937-6940.
[5] Liu Q,Jin L N,Sun W Y.Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology[J].ChemCommun,2012,48(70):8814-8816.
[6] Arul P,John S A.Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone:new electrode material for the trace level determination of nitrobenzene[J].Journal of Electroanalytical Chemistry,2018,829:168-176.
[7] Nguyen T H P,Ninh H D,Tran C V,et al.Size-control and surface modification of flexible metal-organic framework MIL-53(Fe) by polyethyleneglycol for 5-fluorouracil anticancer drug delivery[J].ChemistrySelect,2019,4(8):2333-2338.
[8] Qiu J,Feng Y,Zhang X,et al.Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes:adsorption performance and mechanisms[J].Journal of Colloid and Interface Science,2017,499:151-158.
[9] Wasson M C,Otake K I,Gong X,et al.Modulation of crystal growth and structure within cerium-based metal-organic frameworks[J].CrystEngComm,2020,22(47):8182-8188.
[10] Attia M,Mcmahon N,Li H,et al.Novel route to size-controlled synthesis of MnFe2O4@MOF core-shell nanoparticles[J].Journal of Solid State Chemistry,2020,283:121127.
[11] Bunzen H,Grzywa M,Hambach M,et al.From micro to nano:a toolbox for tuning crystal size and morphology of benzotriazolate-based metal-organic frameworks[J].Crystal Growth & Design,2016,16(6):3190-3197.
[12] Yang J M,Liu Q,Sun W Y.Shape and size control and gas adsorption of Ni(Ⅱ)-doped MOF-5 nano/microcrystals[J].Microporous and Mesoporous Mater,2014,190:26-31.
[13] Vermoortele F,Bueken B,Le B G,et al.Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks:the unique case of UiO-66(Zr)[J].Journal of the American Chemical Society,2013,135(31):11465-11468.
[14] Webber T E,Desai S P,Combs R L,et al.Size control of the MOF NU-1000 through manipulation of the modulator/linker competition[J].Crystal Growth & Design,2020,20(5):2965-2972.
[15] Prasad R,Dalvi S V.Sonocrystallization:monitoring and controlling crystallization using ultrasound[J].Chemical Engineering Science,2020,226:115911.
[16] Abbasi A R,Karimi M,Daasbjerg K.Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method[J].Ultrason Sonochem,2017,37:182-191.
[17] Li Y,Wen G,Li J,et al.Synthesis and shaping of metal-organic frameworks:a review[J].ChemCommun,2022,58(82):11488-11506.
[18] Laybourn A,Katrib J,Ferrari-John R S,et al.Metal-organic frameworks in seconds via selective microwave heating[J].Journal of Materials Chemistry A,2017,5(16):7333-7338.
[19] Ribeiro E L,Davari S A,Hu S,et al.Laser-induced synthesis of ZIF-67:a facile approach for the fabrication of crystalline MOFs with tailored size and geometry[J].Materials Chemistry Frontiers,2019,3(7):1302-1309.
[20] Umemura A,Diring S,Furukawa S,et al.Morphology design of porous coordination polymer crystals by coordination modulation[J].Journal of the American Chemical Society,2011,133(39):15506-15513.
[21] Guo Y N,Li Y,Zhi B,et al.Effect of cationic surfactants on structure and morphology of mesostructured MOFs[J].RSC Advances,2012,2(12):5424-54299.
[22] Bagherzadeh E,Zebarjad S M,Hosseini H R M.Morphology modification of the iron fumarate MIL-88A metal-organic framework using formic acid and acetic acid as modulators[J].European Journal of Inorganic Chemistry,2018,2018(18):1909-1915.
[23] Wang Z,Guo X,Dou W,et al.High supercapacitive performances of Cu-MOFs dominated by morphologies:effects of solvents,surfactants and concentrations[J].Journal of Solid State Chemistry,2020,289:121452.
[24] Wang C H,Zhang D W,Liu S,et al.Ultrathin nanosheet-assembled nickel-based metal-organic framework microflowers for supercapacitor applications[J].ChemCommun,2022,58(7):1009-1012.
[25] Li A L,Ke F,Qiu L G,et al.Controllable synthesis of metal-organic framework hollow nanospheres by a versatile step-by-step assembly strategy[J].CrystEngComm,2013,15(18):3554-3559.
[26] Ghorbanloo M,Safarifard V,Morsali A.Heterogeneous catalysis with a coordination modulation synthesized MOF:morphology-dependent catalytic activity[J].New Journal of Chemistry,2017,41(10):3957-3965.
[27] Wang J,Han Y,Xu H,et al.Microporous assembly and shape control of a new Zn metal-organic framework:morphology-dependent catalytic performance[J].Applied Organometallic Chemistry,2017,32(2):e4097.
[28] Sikdar N,Bhogra M,Waghmare Umesh V,et al.Oriented attachment growth of anisotropic meso/nanoscale MOFs:tunable surface area and CO2 separation[J].Journal of Materials Chemistry A,2017,5(39):20959-20968.
[29] Rodenas T,Luz I,Prieto G,et al.Metal-organic framework nanosheets in polymer composite materials for gas separation[J].Nature Materials,2015,14(1):48-55.
[30] Zhang L,Dong H,Zou Y C,et al.Control of halogen interactions on morphology of metal-organic framework nanosheets[J].Solid State Sciences,2021,118:106629.
[31] Liu Q,Li X,Wen Y,et al.Twofold interpenetrated 2D MOF nanosheets generated by an instant in situ exfoliation method:morphology control and fluorescent sensing[J].Advanced Materials Interfaces,2020,7(16):2000813.
[32] Xiao Y,Chen C,Wu Y,et al.Fabrication of two-dimensional metal-organic framework nanosheets through crystal dissolution-growth kinetics[J].ACS Applied Materials & Interfaces,2022,14(5):7192-7199.
[33] Arbulu R C,Jiang Y B,Peterson E J,et al.Metal-organic framework (MOF) nanorods,nanotubes,and nanowires[J].Angewandte Chemie International Edition,2018,57(20):5813-5817.
[34] Muschi M,Lalitha A,Sene S,et al.Formation of a single-crystal aluminum-based MOF nanowire with graphene oxide nanoscrolls as structure-directing agents[J].Angewandte Chemie International Edition,2020,132(26):10439-10444.
[35] Zvyagina A I,Aleksandrov A E,Martynov A G,et al.Ion-driven self-assembly of lanthanide bis-phthalocyaninates into conductive Quasi-MOF nanowires:an approach toward easily recyclable organic electronics[J].Inorganic Chemistry,2021,60(20):15509-15518.
[36] Annamalai J,Murugan P,Ganapathy D,et al.Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications——a review[J].Chemosphere,2022,298:134184.
[37] Carné A,Carbonell C,Imaz I,et al.Nanoscale metal-organic materials[J].Chemical Society Reviews,2011,40(1):291-305.
[38] Huang X,Lin D,Duan P,et al.Space-confined growth of nanoscale metal-organic frameworks/Pd in hollow mesoporous silica for highly efficient catalytic reduction of 4-nitrophenol[J].Journal of Colloid and Interface Science,2023,629:55-64.
[39] Chang M,Wei Y,Liu D,et al.A general strategy for instantaneous and continuous synthesis of ultrasmall metal-organic framework nanoparticles[J].Angewandte Chemie International Edition,2021,60(50):26390-26396.
[40] Chen G,Chen X,Pan Y,et al.M-gallate MOF/6FDA-polyimide mixed-matrix membranes for C2H4/C2H6 separation[J].Journal of Membrane Science,2021,620:188852.
[41] Qian Q,Asinger P A,Lee M J,et al.MOF-based membranes for gas separations[J].Chemical Reviews,2020,120(16):8161-8266.
[42] Wang S,Liu J,Pulido B,et al.Oriented zeolitic imidazolate framework (ZIF) nanocrystal films for molecular separation membranes[J].ACS Applied Nano Materials,2020,3(4):3839-3846.
[43] Tian T,Wharmby M T,Parra J B,et al.Role of crystal size on swing-effect and adsorption induced structure transition of ZIF-8[J].Dalton Transactions,2016,45(16):6893-6900.
[44] Wang S,Zhang L,Zhang M,et al.Enhanced methylene blue adsorption by Cu-BTC metal-organic Frameworks with engineered particle size using surfactant modulators[J].Water Research,2022,14(12):1864.
[45] Gaikwad S,Kim Y,Gaikwad R,et al.Enhanced VOC adsorption capacity on MOF thin layer with reduced particle size by cryogrinding and microwave method[J].Journal of Environmental Chemical Engineering,2022,10(3):107567.
[46] 赵科.有机金属框架材料MOF-808活性位点的修饰及其催化性能[D].天津:天津理工大学,2021.
[47] Fu Q,Liu D,Niu W,et al.Defect-engineered MOF-808 with highly exposed Zr sites as highly efficient catalysts for catalytic transfer hydrogenation of furfural[J].Fuel,2022,327:125085.
[48] Qin L,Zhao S,Fan C,et al.A photosensitive metal-organic framework having a flower-like structure for effective visible light-driven photodegradation of rhodamine B[J].RSC Advances,2021,11(30):18565-18575.
[49] Cheng J,Shen X,Chen H,et al.Morphology-dependent electrocatalytic performance of a two-dimensional nickel-iron MOF for oxygen evolution reaction[J].Inorganic Chemistry,2022,61(18):7095-7102.
[50] Wang Y,Zhao L,Ma J,et al.Confined interface transformation of metal-organic frameworks for highly efficient oxygen evolution reactions[J].Energy & Environmental Science,2022,15(9):3830-3841.
[51] Kang X,Wang J,Ma Y,et al.3D juniperus sabina-like Ni/Co metal-organic framework as an enhanced electrode material for supercapacitors[J].Journal of Solid State Chemistry,2022,310:123056.
[52] Cao J,Li Y,Wang L,et al.Solvent-free MOF-CVD prepared ZIF-67 film with hollow and opened morphology for supercapacitor application[J].Journal of Alloys and Compounds,2023,936:168262.
[53] Zhang H,Li J,Li Z,et al.Influence of Co-MOF morphological modulation on its electrochemical performance[J].Journal of Physics and Chemistry of Solids,2022,160:110336.
Options
Outlines

/