[1] Sorcar S,Yoriya S,Lee H,et al.A review of recent progress in gas phase CO2 reduction and suggestions on future advancement[J].Materials Today Chemistry,2020,16:100264-100286.
[2] 徐钢,薛小军,张钟,等.一种基于电解水制氢及甲醇合成的碳中和能源技术路线[J].中国电机工程学报,2022,42(8):1-12.
[3] Lorber K,Djinović P.Accelerating photo-thermal CO2 reduction to CO,CH4 or methanol over metal/oxide semiconductor catalysts[J].Iscience,2022:104107-104123.
[4] Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
[5] Halmann M.Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells[J].Nature,1978,275(5676):115-116.
[6] Inoue T,Fujishima A,Konishi S,et al.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J].Nature,1979,277(5698):637-638.
[7] Wang Z,Akter M S,Wang L.Hollow structure for photocatalytic CO2 reduction[J].ChemNanoMat,2020,6(6):881-888.
[8] 张万顺,曹智颖,郑佳,等.TiO2光催化剂研究进程[J].现代盐化工,2022,49(2):19-21.
[9] 吴雪婷,于洋,宋术岩,等.人工固碳技术—热催化还原CO2催化剂的研究进展[J].应用化学,2022,39(4):599-615.
[10] Long R,Li Y,Song L,et al.Coupling solar energy into reactions:materials design for surface Plasmon-mediated catalysis[J].Small,2015,11(32):3873-3889.
[11] Mateo D,Cerrillo J L,Durini S,et al.Fundamentals and applications of photo-thermal catalysis[J].Chemical Society Reviews,2021,50(3):2173-2210.
[12] Wang Z,Yang Z,Fang R,et al.A State-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum[J].Chemical Engineering Journal,2022,429:132322-132343.
[13] Sun M,Zhao B,Chen F,et al.Thermally-assisted photocatalytic CO2 reduction to fuels[J].Chemical Engineering Journal,2021,408:127280-127301.
[14] Ma R,Sun J,Li D H,et al.Review of synergistic photo-thermo-catalysis:mechanisms,materials and applications[J].International Journal of Hydrogen Energy,2020,45(55):30288-30324.
[15] Su X,Yang X,Zhao B,et al.Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts:recent advances and the future directions[J].Journal of Energy Chemistry,2017,26(5):854-867.
[16] Huang Y,Yu Y,Yu Y,et al.Oxygen vacancy engineering in photocatalysis[J].Solar RRL,2020,4(8):2000037-2000051.
[17] Ge H,Kuwahara Y,Kusu K,et al.Plasmon-induced catalytic CO2 hydrogenation by a nano-sheet Pt/HxMoO3-y hybrid with abundant surface oxygen vacancies[J].Journal of Materials Chemistry A,2021,9(24):13898-13907.
[18] Qi Y,Jiang J,Liang X,et al.Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation[J].Advanced Functional Materials,2021,31(22):2100908-2100916.
[19] Patil S B,Basavarajappa P S,Ganganagappa N,et al.Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production,CO2 reduction and air purification[J].International Journal of Hydrogen Energy,2019,44(26):13022-13039.
[20] Loh J Y Y,Ye Y,Kherani N P.Synergistic coupling of photo and thermal conditions for enhancing CO2 reduction rates in the reverse water gas shift reaction[J].ACS Applied Materials & Interfaces,2019,12(2):2234-2242.
[21] Jia Z,Ning S,Tong Y,et al.Selective photothermal reduction of CO2 to CO over Ni-nanoparticle/N-doped CeO2 nanocomposite catalysts[J].ACS Applied Nano Materials,2021,4(10):10485-10494.
[22] Xu Q,Zhang L,Cheng B,et al.S-scheme heterojunction photocatalyst[J].Chem,2020,6(7):1543-1559.
[23] Wang L,Dong Y,Yan T,et al.Black indium oxide a photothermal CO2 hydrogenation catalyst[J].Nature Communications,2020,11(1):1-8.
[24] Yan J,Wang C,Ma H,et al.Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction[J].Applied Catalysis B:Environmental,2020,268:118401-118412.
[25] Liu X,Iocozzia J,Wang Y,et al.Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion,photocatalysis and environmental remediation[J].Energy & Environmental Science,2017,10(2):402-434.
[26] Xu C,Huang W,Li Z,et al.Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2[J].ACS Catalysis,2018,8(7):6582-6593.
[27] Lu B,Quan F,Sun Z,et al.Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion[J].Catalysis Communications,2019,129:105724-105729.
[28] Ashok J,Pati S,Hongmanorom P,et al.A review of recent catalyst advances in CO2 methanation processes[J].Catalysis Today,2020,356:471-489.
[29] Cao S,Shen B,Tong T,et al.2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction[J].Advanced Functional Materials,2018,28(21):1800136-1800147.
[30] Wang K,Jiang R,Peng T,et al.Modeling the effect of Cu doped TiO2 with carbon dots on CO2 methanation by H2O in a photo-thermal system[J].Applied Catalysis B:Environmental,2019,256:117780-117792.
[31] Wang L,Wang Y,Cheng Y,et al.Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance[J].Journal of Materials Chemistry A,2016,4(14):5314-5322.
[32] Li Y,Wang C,Song M,et al.TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam[J].Applied Catalysis B:Environmental,2019,243:760-770.
[33] Meng X,Wang T,Liu L,et al.Photothermal conversion of CO2 into CH4 with H2 over Group Ⅷ nanocatalysts:an alternative approach for solar fuel production[J].Angewandte Chemie International Edition,2014,53(43):11478-11482.
[34] Sun N,Zhu Y,Li M,et al.Thermal coupled photocatalysis over Pt/g-C3N4 for selectively reducing CO2 to CH4 via cooperation of the electronic metal-support interaction effect and the oxidation state of Pt[J].Applied Catalysis B:Environmental,2021,298:120565-120577.
[35] Cai S,Zhang M,Li J,et al.Anchoring single-atom Ru on CdS with enhanced CO2 capture and charge accumulation for high selectivity of photothermocatalytic CO2 reduction to solar fuels[J].Solar RRL,2021,5(2):2000313-2000323.
[36] Yu F,Wang C,Ma H,et al.Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2[J].Nanoscale,2020,12(13):7000-7010.
[37] Etim U J,Song Y,Zhong Z.Improving the Cu/ZnO-based catalysts for carbon dioxide hydrogenation to methanol,and the use of methanol as a renewable energy storage media[J].Frontiers in Energy Research,2020,8:545431-545457.
[38] Wang L,Ha M N,Liu Z,et al.Mesoporous WO3 modified by Mo for enhancing reduction of CO2 to solar fuels under visible light and thermal conditions[J].Integrated Ferroelectrics,2016,172(1):97-108.
[39] Wang L,Ghoussoub M,Wang H,et al.Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure[J].Joule,2018,2(7):1369-1381.
[40] Li S,Wang C,Li D,et al.Bi4TaO8Cl/Bi heterojunction enables high-selectivity photothermal catalytic conversion of CO2-H2O flow to liquid alcohol[J].Chemical Engineering Journal,2022,435:135133-135148.
[41] Wang Z,Song H,Pang H,et al.Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts[J].Applied Catalysis B:Environmental,2019,250:10-16.
[42] Wu D,Deng K,Hu B,et al.Plasmon-assisted photothermal catalysis of low-pressure CO2 hydrogenation to methanol over Pd/ZnO catalyst[J].ChemCatChem,2019,11(6):1598-1601.
[43] Zhou W,Cheng K,Kang J,et al.New horizon in C1 chemistry:breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J].Chemical Society Reviews,2019,48(12):3193-3228.
[44] Li P,Liu L,An W,et al.Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and CC coupling photothermal catalytic reduction of CO2 to ethanol[J].Applied Catalysis B:Environmental,2020,266:118618-118632.
[45] Chen G,Gao R,Zhao Y,et al.Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons[J].Advanced Materials,2018,30(3):1704663-1704671.
[46] Liu L,Puga A V,Cored J,et al.Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites[J].Applied Catalysis B:Environmental,2018,235:186-196.
[47] Li Z,Lin Q,Li M,et al.Recent advances in process and catalyst for CO2 reforming of methane[J].Renewable and Sustainable Energy Reviews,2020,134:110312-110336.
[48] Han B,Wei W,Chang L,et al.Efficient visible light photocatalytic CO2 reforming of CH4[J].ACS Catalysis,2016,6(2):494-497.
[49] Liu H,Song H,Zhou W,et al.A promising application of optical hexagonal TaN in photocatalytic reactions[J].Angewandte Chemie,2018,130(51):17023-17026.
[50] Pan F,Xiang X,Du Z,et al.Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating[J].Applied Catalysis B:Environmental,2020,260:118189-118198.
[51] Liu H,Meng X,Dao T D,et al.Conversion of carbon dioxide by methane reforming under visible-light irradiation:surface-plasmon-mediated nonpolar molecule activation[J].Angewandte Chemie,2015,127(39):11707-11711.
[52] Song H,Meng X,Dao T D,et al.Conversion by effective plasmonic coupling effect of Pt and Au nanoparticles[J].ACS Applied Materials & Interfaces,2018,10(1):408-416.
[53] Zhao J,Guo X,Shi R,et al.NiFe nanoalloys derived from layered double hydroxides for photothermal synergistic reforming of CH4 with CO2[J].Advanced Functional Materials,2022:2204056-2204065.
[54] Huang H,Mao M,Zhang Q,et al.Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability[J].Advanced Energy Materials,2018,8(10):1702472-1702483.
[55] Wu S,Li Y,Zhang Q,et al.High light-to-fuel efficiency and CO2 reduction rates achieved on a unique nanocomposite of Co/Co doped Al2O3 nanosheets with UV-vis-IR irradiation[J].Energy & Environmental Science,2019,12(8):2581-2590.
[56] Zhang Q,Li Y,Wu S,et al.UV-vis-IR irradiation driven CO2 reduction with high light-to-fuel efficiency on a unique nanocomposite of Ni nanoparticles loaded on Ni doped Al2O3 nanosheets[J].Journal of Materials Chemistry A,2019,7(34):19800-19810.
[57] Rehman A,Saleem F,Javed F,et al.Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides[J].Journal of Environmental Chemical Engineering,2021,9(2):105113-105141.
[58] Xiao J D,Jiang H L.Metal-organic frameworks for photocatalysis and photothermal catalysis[J].Accounts of Chemical Research,2018,52(2):356-366.
[59] Yang Q,Yang C C,Lin C H,et al.Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion[J].Angewandte Chemie,2019,131(11):3549-3553.
[60] Jiang W,Yang J,Yan G,et al.A novel 3-fold interpenetrated dia metal-organic framework as a heterogeneous catalyst for CO2 cycloaddition[J].Inorganic Chemistry Communications,2020,113:107770-107776.