[1] Shet S P,Priya S S,Sudhakar K,et al.A review on current trends in potential use of metal-organic framework for hydrogen storage[J].International Journal of Hydrogen Energy,2021,46(21):11782-11803.
[2] Niaz S,Manzoor T,Pandith A H.Hydrogen storage:materials,methods and perspectives[J].Renewable and Sustainable Energy Reviews,2015,50:457-469.
[3] 李莹,MOFs材料储氢量影响因素研究进展[J].安全、健康和环境,2021,21(9):6-13.
[4] 赵琳,张建星,祝维燕,等.液态有机物储氢技术研究进展[J].化学试剂,2019,41(1):47-53.
[5] Chen H,Yu H,Zhang Q,et al.Enhancement in dehydriding performance of magnesium hydride by iron incorporation:a combined experimental and theoretical investigation[J].Journal of Power Sources,2016,322:179-186.
[6] Wu G,Zhang J,Li Q,et al.Dehydrogenation kinetics of magnesium hydride investigated by DFT and experiment[J].Computational Materials Science,2010,49(1):144-149.
[7] Huang Z,Wang Y,Wang D,et al.Synergistic effects of Mg and N cosubstitution on enhanced dehydrogenation properties of LiBH4:a first-principles study[J].The Journal of Physical Chemistry C,2018,123(3):1550-1558.
[8] 蔡泽亮.Zr基纳米合金对高容量储氢材料MgH2的改性及机理研究[D].镇江:江苏科技大学,2019.
[9] 王凤玲.Zr基MOFs材料储氢性能及改性研究[D].大连:大连理工大学,2016.
[10] Thomas K M.Hydrogen adsorption and storage on porous materials[J].Catalysis Today,2007,120(3-4):389-398.
[11] 张利智,刘聪,禹国军.基于物理吸附的微孔储氢材料研究进展[J].应用化工,2021,50(12):3407-3410.
[12] Chen Z,Li P,Anderson R,et al.Balancing volumetric and gravimetric uptake in highly porous materials for clean energy[J].Science,2020,368(6488):297-303.
[13] Lin R B,Li L,Zhou H L,et al.Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J].Nature Materials,2018,17(12):1128-1133.
[14] 殷冬冬.MOF负载Pd催化剂的制备及选择性加氢性能[D].大连:大连理工大学,2019.
[15] 黄钟毅,梁祥京,潘熙,等.IRMOFs基金属有机骨架材料合成及性能优化研究进展[J].工业催化,2021,29(8):7-12.
[16] Lin J B,Nguyen T T T,Vaidhyanathan R,et al.A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture[J].Science,2021,374(6574):1464-1469.
[17] 赵晶晶,杨志远,孟茁越,等.金属有机框架材料在多相催化中的研究进展[J].化工新型材料,2020,48(9):24-28.
[18] Ahmed A,Seth S,Purewal J,et al.Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks[J].Nature Communications,2019,10(1):1-9.
[19] Rosi N L,Eckert J,Eddaoudi M,et al.Hydrogen storage in microporous metal-organic frameworks[J].Science,2003,300(5622):1127-1129.
[20] Li H,Eddaoudi M,O'Keeffe M,et al.Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J].Nature,1999,402(6759):276-279.
[21] Kaye S S,Dailly A,Yaghi O M,et al.Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)[J].Journal of the American Chemical Society,2007,129(46):14176-14177.
[22] Kim J,Yeo S,Jeon J D,et al.Enhancement of hydrogen storage capacity and hydrostability of metal-organic frameworks (MOFs) with surface-loaded platinum nanoparticles and carbon black[J].Microporous and Mesoporous Materials,2015,202:8-15.
[23] Furukawa H,Ko N,Go Y B,et al.Ultrahigh porosity in metal-organic frameworks[J].Science,2010,329(5990):424-428.
[24] Greathouse J A,Allendorf M D.The interaction of water with MOF-5 simulated by molecular dynamics[J].Journal of the American Chemical Society,2006,128(33):10678-10679.
[25] Morris W,Volosskiy B,Demir S,et al.Synthesis,structure,and metalation of two new highly porous zirconium metal-organic frameworks[J].Inorganic Chemistry,2012,51(12):6443-6445.
[26] Cavka J H,Jakobsen S,Olsbye U,et al.A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J].Journal of the American Chemical Society,2008,130(42):13850-13851.
[27] Chavan S,Vitillo J G,Gianolio D,et al.H2 storage in isostructural UiO-67 and UiO-66 MOFs[J].Physical Chemistry Chemical Physics,2012,14(5):1614-1626.
[28] Bambalaza S E,Langmi H W,Mokaya R,et al.Compaction of a zirconium metal-organic framework (UiO-66) for high density hydrogen storage applications[J].Journal of Materials Chemistry A,2018,6(46):23569-23577.
[29] Moggach S A,Bennett T D,Cheetham A K.The effect of pressure on ZIF-8:increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa[J].Angewandte Chemie International Edition,2009,48(38):7087-7089.
[30] Peterson G W,DeCoste J B,Glover T G,et al.Effects of pelletization pressure on the physical and chemical properties of the metal-organic frameworks Cu3(BTC)2 and UiO-66[J].Microporous and Mesoporous Materials,2013,179:48-53.
[31] Chanut N,Wiersum A D,Lee U H,et al.Observing the effects of shaping on gas adsorption in metal-organic frameworks[J].European Journal of Inorganic Chemistry,2016,2016(27):4416-4423.
[32] 兰友世.多孔骨架材料用于工业气体存储和分离的计算研究[D].北京:北京化工大学,2019.
[33] Zhang X,Lin R B,Wang J,et al.Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity[J].Advanced Materials,2020,32(17):1907995.
[34] Zhang X,Zhang X,Johnson J A,et al.Highly porous zirconium metal-organic frameworks with β-UH3-like topology based on elongated tetrahedral linkers[J].Journal of the American Chemical Society,2016,138(27):8380-8383.
[35] Latroche M,Surblé S,Serre C,et al.Hydrogen storage in the giant pore metal-organic frameworks MIL-100 and MIL-101[J].Angewandte Chemie International Edition,2006,118(48):8407-8411.
[36] Feng D,Wang K,Wei Z,et al.Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal-organic frameworks[J].Nature Communications,2014,5(1):1-9.
[37] Farha O K,Yazaydin A Ö,Eryazici I,et al.De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities[J].Nature Chemistry,2010,2(11):944-948.
[38] Chen Z,Li P,Zhang X,et al.Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption[J].Journal of the American Chemical Society,2019,141(7):2900-2905.
[39] Furukawa H,Cordova K E,O'Keeffe M,et al.The chemistry and applications of metal-organic frameworks[J].Science,2013,341(6149):1230444.
[40] Ahmed A,Liu Y,Purewal J,et al.Balancing gravimetric and volumetric hydrogen density in MOFs[J].Energy & Environmental Science,2017,10(11):2459-2471.
[41] Ahmed A,Seth S,Purewal J,et al.Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks[J].Nature Communications,2019,10(1):1-9.
[42] Chen Z,Mian M R,Lee S J,et al.Fine-tuning a robust metal-organic framework toward enhanced clean energy gas storage[J].Journal of the American Chemical Society,2021,143(45):18838-18843.
[43] Jaramillo D E,Jiang H Z H,Evans H A,et al.Ambient-temperature hydrogen storage via vanadium(Ⅱ)-dihydrogen complexation in a metal-organic framework[J].Journal of the American Chemical Society,2021,143(16):6248-6256.
[44] Bhatia S K,Myers A L.Optimum conditions for adsorptive storage[J].Langmuir,2006,22(4):1688-1700.
[45] Cairns A J,Eckert J,Wojtas L,et al.Gaining insights on the H2-sorbent interactions:robust soc-MOF platform as a case study[J].Chemistry of Materials,2016,28(20):7353-7361.
[46] Duan C,Yu Y,Xiao J,et al.Water-based routes for synthesis of metal-organic frameworks:a review[J].Science China Materials,2020,63(5):667-685.
[47] Al-Kutubi H,Gascon J,Sudhölter E J R,et al.Electrosynthesis of metal-organic frameworks:challenges and opportunities[J].ChemElectroChem,2015,2(4):462-474.
[48] Chen Z,Kirlikovali K O,Idrees K B,et al.Porous materials for hydrogen storage[J].Chem,2022,8(3):693-716.