Progress in preparation and application of metal-organic polyhedral materials

Expand
  • 1. College of Chemistry and Chemical Engineering,Xi'an University of Science and Technology, Xi'an 710054;
    2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization of Land and Resources,Xi'an 710021

Received date: 2021-12-13

  Revised date: 2022-12-13

  Online published: 2023-04-27

Abstract

Metal-organic polyhedra (MOPs) are synthesized by self-assembly of inorganic metal ions and organic ligands with specific structures.MOPs are inorganic-organic hybrid materials with highly ordered and discrete molecular structures.They are characterized by high porosity,adjustable pore size,chemical stability,and customizable functions,and have promising applications.In this paper,we summarized the preparation methods and applications of MOPs,pointed out the constraints on the development of MOPs materials,and proposed the future development direction of MOPs materials.

Cite this article

Duan Xinbo, Yang Zhiyuan, Ju Xiaoqian, Wang Changguo . Progress in preparation and application of metal-organic polyhedral materials[J]. New Chemical Materials, 2023 , 51(4) : 20 -25 . DOI: 10.19817/j.cnki.issn1006-3536.2023.04.004

References

[1] Mollick S,Fajal S,Mukherjee S,et al.Stabilizing metal-orga-nic polyhedra (mop):issues and strategies[J].Chemistry-an Asian Journal,2019,14(18):3096-3108.
[2] Zeng H,Xie X,Xie M,et al.Cage-interconnected metal-orga-nic framework with tailored apertures for efficient C2H6/C2H4 separation under humid conditions[J].Journal of the American Chemical Society,2019,141(51):20390-20396.
[3] 党璐童,康永锋.金属有机框架材料合成方法研究进展[J].化工新型材料,2020,48(10):15-19;24.
[4] Furukawa H,Yaghi O M.Storage of hydrogen,methane,and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J].Journal of the American Chemical Society,2009,131(25):8875-8883.
[5] 张春燕,罗建新,张德春,等.共价有机骨架聚合物(COFs)的研究进展[J].化工新型材料,2014,42(12):19-21.
[6] Xing W,Li H,Dong X,et al.Robust multifunctional Zr-based metal-organic polyhedra for high proton conductivity and selective CO2 capture[J].Journal of Materials Chemistry A,2018,6(17):7724-7730.
[7] Brian Moulton,Lu Jianjiang,Arunendu Mondal,et al.Nanoballs:nanoscale faceted polyhedra with large windows andcavities[J].Chemical Communications,2001(9):863-864.
[8] Michael Mastalerz.Porous shape-persistent organic cage compounds of different size,geometry,and function[J].Accounts of Chemical Research,2018,51(10):2411-2422.
[9] Jahović I,Zou Y,Adorinni S,et al.Cages meet gels:smart materials with dual porosity[J].Matter,2021,4(7):2123-2140.
[10] Lee H S,Jee S,Kim R,et al.A highly active,robust photocatalyst heterogenized[J].Energy & Environmental Science,2020,13(2):519-526.
[11] Liu G,Zeller M,Su K,et al.Controlled orthogonal self-assembly of heterometal-decorated coordination cages[J].Chemistry-A European Journal,2016,22(48):17345-17350.
[12] Cornford F M D.Plato's cosmology:the timaeus of plato[M].Routledge:London,2014.
[13] O'keeffe M,Peskov M A,Ramsden S J,et al.The reticular chemistry structure resource (rcsr) database of,and symbols for,crystal nets[J].Accounts of Chemical Research,2008,41(12):1782-1789.
[14] Lee S,Jeong H,Nam D,et al.The rise of metal-organic polyhedra[J].Chemical Society Reviews,2021,50(1):528-555.
[15] Saalfrank R W,Stark A,Peters K,et al.The first “adamantoid” alkaline earth metal chelate complex:synthesis,structure,and reactivity[J].Angewandte Chemie International Edition in English,1988,27(6):851-853.
[16] Liu G,Ju Z,Yuan D,et al.In situ construction of a coordination zirconocene tetrahedron[J].Inorganic Chemistry,2013,52(24):13815-13817.
[17] Hiraoka S,Harano K,Shiro M,et al.Isostructural coordination capsules for a series of 10 different D5-D10 transition-metal ions[J].Angewandte Chemie International Edition,2006,45(39):6488-6491.
[18] Kim D,Paek J H,Jun M,et al.Self-assembly of rectangles and prisms via a molecular “clip”[J].Inorganic Chemistry,2005,44(22):7886-7894.
[19] Furukawa S,Horike N,Kondo M,et al.Rhodium-organic cuboctahedra as porous solids with strong binding sites[J].Inorg Chem,2016,55(21):10843-10846.
[20] Fujita M,Tominaga M,Hori A,et al.Coordination assemblies from a Pd(Ⅱ)-cornered square complex[J].Accounts of Chemical Research,2005,38(4):369-378.
[21] Brückner C,Powers R E,Raymond K N.Symmetry-driven rational design of a tetrahedral supramolecular Ti4l4 cluster[J].Angewandte Chemie International Edition,1998,37(13):1837-1839.
[22] Seidel S R,Stang P J.High-symmetry coordination cages via self-assembly[J].Accounts of Chemical Research,2002,35(11):972-983.
[23] Fujita M,Ogura K.Transition-metal-directed assembly of well-defined organic architectures possessing large voids:from macrocycles to [2] catenanes[J].Coordination Chemistry Reviews,1996,148:249-264.
[24] Stang P J,Olenyuk B.Self-assembly,symmetry,and molecular architecture:coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra[J].Accounts of Chemical Research,1997,30(12):502-518.
[25] Leininger S,Olenyuk B,Stang P J.Self-assembly of discrete cyclic nanostructures mediated by transition metals[J].Che-mical Reviews,2000,100(3):853-908.
[26] Caulder D L,Brückner C,Powers R E,et al.Design,formation and properties of tetrahedral M4l4 and M4l6 supramolecular clusters[J].Journal of the American Chemical Society,2001,123(37):8923-8938.
[27] Olenyuk B,Fechtenkötter A,Stang P.Molecular architecture of cyclic nanostructures:use of Co-ordination chemistry in the building of supermolecules with predefined geometric shapes[J].Journal of the Chemical Society,Dalton Transactions,1998,11(11):1707-1728.
[28] Mollick S,Fajal S,Mukherjee S,et al.Stabilizing metal-org-anic polyhedra (mop):issues and strategies[J].Chemistry-An Asian Journal,2019,14(18):3096-3108.
[29] Caulder D L,Raymond K N.Supermolecules by design[J].Accounts of Chemical Research,1999,32(11):975-982.
[30] Makoto Fujita,Kazuhiko Umemoto,Yoshizawa M,et al.Molecular paneling via coordination[J].Chemical Communications,2001(6):509-518.
[31] 张海霞.金属有机笼基多孔材料的设计合成及性能研究[D].无锡:江南大学,2019.
[32] Vardhan H,Verpoort F.Metal-organic polyhedra:catalysis and reactive intermediates[J].Advanced Synthesis & Catalysis,2015,357(7):1351-1368.
[33] Vardhan H,Yusubov M,Verpoort F.Self-assembled metal-organic polyhedra:an overview of various applications[J].Coordination Chemistry Reviews,2016,306:171-194.
[34] Lee H S,Jee S,Kim R,et al.A highly active,robust photoca-talyst heterogenized in discrete cages of metal-organic polyhedra for CO2 reduction[J].Energy & Environmental Science,2020,13(2):519-526.
[35] Liu G,Zeller M,Su K,et al.Controlled orthogonal self-assembly of heterometal-decorated coordination cages[J].Chemistry-A European Journal,2016,22(48):17345-17350.
[36] Nam D,Huh J,Lee J,et al.Cross-linking Zr-based metal-organic polyhedra via postsynthetic polymerization[J].Chemical Science,2017,8(11):7765-7771.
[37] Tang J,Wei F,Ding S,et al.Azo-functionalized zirconium based metal-organic polyhedron as an efficient catalyst for CO2 fixation with epoxides[J].Chemistry,2021,27(50):12890-12899.
[38] Lorzing G R,Trump B A,Brown C M,et al.Selective gas adsorption in highly porous chromium(ⅱ)-based metal-organic polyhedra[J].Chemistry of Materials,2017,29(20):8583-8587.
[39] 李昭,田林,顾博翰,等.金属有机框架吸附存储与分离CH4、CO2研究进展[J].化工新型材料,2018,46(9):51-54,59.
[40] Xing W,Li H,Dong X,et al.Robust multifunctional Zr-based metal-organic polyhedra for high proton conductivity and selective CO2 capture[J].Journal of Materials Chemistry A,2018,6(17):7724-7730.
[41] Deng Z,Ying W,Gong K,et al.Facilitate gas transport through metal-organic polyhedra constructed porous liquid membrane[J].Small,2020,16(11):1907016.
[42] Li T,Sun L,Liu X,et al.Isolated lithium sites supported on mesoporous silica:a novel solid strong base with high catalytic activity[J].Chemical Communications,2012,48(51):6423-6425.
[43] Sun L,Li J,Lu W,et al.Confinement of metal-organic polyhedra in silica nanopores[J].Journal of the American Chemical Society,2012,134(38):15923-15928.
[44] Ahmad N,Younus H A,Chughtai A H,et al.Metal-organic molecular cages:applications of biochemical implications[J].Chemical Society Reviews,2015,44(1):9-25.
[45] Vetromile C M,Lozano A,Feola S,et al.Solution stability of Cu(Ⅱ) metal-organic polyhedra[J].Inorganica Chimica Acta,2011,378(1):36-41.
[46] Furrer M A,Schmitt F,Wiederkehr M,et al.Cellular delivery of pyrenyl-arene ruthenium complexes by a water-soluble arene ruthenium metalla-cage[J].Dalton Transactions,2012,41(24):7201-7211.
[47] Zhao D,Tan S,Yuan D,et al.Surface functionalization of po-rous coordination nanocages via click chemistry and their application in drug delivery[J].Advanced Materials,2011,23(1):90-93.
[48] Harris K,Fujita D,Fujita M.Giant hollow Mnl2n spherical complexes:structure,functionalisation and applications[J].Chemical Communications,2013,49(60):6703-6712.
[49] Harano K,Hiraoka S,Shionoya M.3nm-scale molecular switching between fluorescent coordination capsule and nonfluorescent cage[J].Journal of the American Chemical Society,2007,129(17):5300-5301.
[50] Cook T R,Zheng Y,Stang P J.Metal-organic frameworks and self-assembled supramolecular coordination complexes:comparing and contrasting the design,synthesis,and functionality of metal-organic materials[J].Chemical Reviews,2013,113(1):734-777.
[51] Tranchemontagne D,Ni Z,O'keeffe M,et al.Reticular che-mistry of metal-organic polyhedra[J].Angewandte Chemie International Edition,2008,47(28):5136-5147.
[52] Sudik A C,Côté A P,Wong-foy A G,et al.A metal-organic framework with a hierarchical system of pores and tetrahedral building blocks[J].Angewandte Chemie International Edition,2006,45(16):2528-2533.
[53] Tozawa T,Jones J T A,Swamy S I,et al.Porous organic cages[J].Nature Materials,2009,8(12):973-978.
[54] Hasell T,Cooper A I.Porous organic cages:soluble,modular and molecular pores[J].Nature Reviews Materials,2016,1(9):16053.
[55] Howarth A J,Liu Y,Li P,et al.Chemical,thermal and mechanical stabilities of metal-organic frameworks[J].Nature Reviews Materials,2016,1(3):15018.
Options
Outlines

/