[1] Lu Yuanyuan,Liang Xinqiang,Christophe Niyungeko,et al.A review of the identification and detection of heavy metal ions in the environment by voltammetry[J].Talanta,2018,178:324-338.
[2] Javier F Bárcena,Inigo Claramunt Javier García-Alba,María Luisa Pérez,et al.A method to assess the evolution and recovery of heavy metal pollution in estuarine sediments:past history,present situation and future perspectives[J].Marine Pollution Bulletin,2017,124(1):421-434.
[3] Femina Carolin C,Senthil Kumar P,Saravanan A,et al.Efficient techniques for the removal of toxic heavy metals from aquatic environment:a review[J].Journal of Environmental Chemical Engineering,2017,5(3):2782-2799.
[4] Thatoi Hrudayanath,Das Sasmita,Mishra Jigni,et al.Bacterial chromate reductase,a potential enzyme for bioremediation of hexavalent chromium:a review[J].Journal of Environmental Management,2014,146:383-399.
[5] Vendruscolo F,da Rocha Ferreira G L,Antoniosi Filho N R.Biosorption of hexavalent chromium by microorganisms[J].International Biodeterioration & Biodegradation,2017,119:87-95.
[6] Elliott Hamilton M,Scott Young D,Elizabeth Bailey H,et al.Chromium speciation in foodstuffs:a review[J].Food Chemistry,2018,250:105-112.
[7] Shang Jingge,Zong Mingzhu,Yu Ying,et al.Removal of chromium(Ⅵ) from water using nanoscale zerovalent iron particles supported on herb-residue biochar[J].Journal of Environmental Management,2017,197:331-337.
[8] Tandukar Madan,Huber Samuel J,Onodera Takashi,et al.Biological chromium(Ⅵ) reduction in the cathode of a microbial fuel cell[J].Environmental Science & Amp Technology,2009,43(21):8159-8165.
[9] Song Tianshun,Jin Yuejuan,Bao Jingjing,et al.Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell[J].Journal of Hazardous Materials,2016,317:73-80.
[10] Bao C,Chen M,Liu G,et al.Efficient adsorption/reduction of aqueous hexavalent chromium using oligoaniline hollow microspheres fabricated by a template-free method[J].Chem Technol Biotechnol,2018,93(4):1147-1158.
[11] Li Zhongjian,Zhang Xingwang,Lei Lecheng.Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell[J].Process Bioche-mistry,2008,43(12):1352-1358.
[12] Wang Chao,Deng Huan,Zhao Feng.The remediation of chromium(Ⅵ)-contaminated soils using microbial fuel cells[J].Soil and Sediment Contamination:An International Journal,2016,25(1):1-12.
[13] Gude V G.Wastewater treatment in microbial fuel cells-an overview[J].Journal of Cleaner Production,2016,122:287-307.
[14] Sevda Surajbhan,Sreekishnan T R,Pous Narcís,et al.Bioelectroremediation of perchlorate and nitrate contaminated water:a review[J].Bioresource Technology,2018,255:331-339.
[15] Keith,Scott,Cassandro,et al.A study of a microbial fuel cell battery using manure sludge waste[J].Journal of Chemical Technology & Biotechnology,2007,82:809-817.
[16] Penteado E D,Fernandez-Marchante C M,Zaiat M,et al.Energy recovery from winery wastewater using a dual chamber microbial fuel cell[J].Journal of Chemical Technology & Biotechnology,2016,91(6):1802-1808.
[17] Hindatu Y,Annuar M S M,Gumel A M.Mini-review:anode modification for improved performance of microbial fuel cell[J].Renewable and Sustainable Energy Reviews,2017,73:236-248.
[18] Carole Abourached,Marshall English J,Liu Hong.Wastewater treatment by microbial fuel cell (MFC) prior irrigation water reuse[J].Journal of Cleaner Production,2016,137:144-149.
[19] Xafenias Nikolaos,Zhang Yue,Banks Charles J.Enhanced performance of hexavalent chromium reducing cathodes in the presence of shewanella oneidensis MR-1 and lactate[J].Environmental Science & Technology,2013,47(9):4512-4520.
[20] 安众一.微生物电化学系统利用重金属离子产电特性研究[D].哈尔滨:哈尔滨工业大学,2015.
[21] Wang Gang,Huang Liping,Zhang Yifeng.Cathodic reduction of hexavalent chromium [Cr(Ⅵ)] coupled with electricity generation in microbial fuel cells[J].Biotechnology Letters,2008,30(11):1959-1966.
[22] Li Z,Zhang X,Lei L.Electricity production during the treatment of real electroplating wastewater containing Cr(Ⅵ) using microbial fuel cell[J].Process Biochemistry,2008,43(12):1352-1358.
[23] Li Y,Lu A,Ding H,et al.Cr(Ⅵ) reduction at rutile-catalyzed cathode in microbial fuel cells[J].Electrochemistry Communications,2009,11(7):1496-1499.
[24] Liu Liang,Yuan Yong,Li Fangbai,et al.In-situ Cr(Ⅵ) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria[J].Bioresource Technology,2011,102(3):2468-2473.
[25] Singhvi P.Simultaneous chromium removal and power gene-ration using algal biomass in a dual chambered salt bridge microbial fuel cell[J].Journal of Bioremediation & Biodegradation,2013,4(5):190.
[26] Pang Yunmeng,Xie Daohai,Wu Baoguo,et al.Conductive po-lymer-mediated Cr(Ⅵ) reduction in a dual-chamber microbial fuel cell under neutral conditions[J].Synthetic Metals,2013,183:57-62.
[27] Xafenias N,Zhang Y,Banks C J.Evaluating hexavalent chromium reduction and electricity production in microbial fuel cells with alkaline cathodes[J].International Journal of Environmental Science and Technology,2015,12(8):2435-2446.
[28] Gangadharan Praveena,Nambi Indumathi M,Senthilnathan Jaganathan.Liquid crystal polaroid glass electrode from e-waste for synchronized removal/recovery of Cr(+6) from wastewater by microbial fuel cell[J].Bioresource Technology,2015,195:96-101.
[29] Carmalin Sophia A,Saikant S.Reduction of chromium(Ⅵ) with energy recovery using microbial fuel cell technology[J].Journal of Water Process Engineering,2016,11:39-45.
[30] Chen Qingyun,Fu Rong,Fang Xiaowen,et al.Cr-methanol fuel cell for efficient Cr(Ⅵ) removal and high power production[J].Applied Energy,2015,138:31-35.
[31] 陈立香,肖勇,赵峰.微生物燃料电池生物阴极[J].化学进展,2012,24(1):157-162.
[32] Debabrata Pradhan,Lala Behari Sukla,Matthew Sawyer,et al.Recent bioreduction of hexavalent chromium in wastewater treatment:a review[J].Journal of Industrial and Engineering Chemistry,2017,55:1-20.
[33] Huang Liping,Chai Xiaolei,Cheng Shaoan,et al.Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation[J].Chemical Engineering Journal,2011,166(2):652-661.
[34] Breheny Mark,Bowman Kyle,Farahmand Nasim,et al.Biocatalytic electrode improvement strategies in microbial fuel cell systems[J].Journal of Chemical Technology & Biotechnology,2019,94(7):2081-2091.
[35] Clauwaert Peter,Van der Ha David,Boon Nico,et al.Open air biocathode enables effective electricity generation with microbial fuel cells[J].Environmental Science & Technology,2007,41(21):7564-7569.
[36] Rabaey Korneel,Clauwaert Peter,Aelterman Peter,et al.Tubular microbial fuel cells for efficient electricity generation[J].Environmental Science & Technology,2005,39(20):8077-8082.
[37] Huang L,Chen J,Quan X,et al.Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J].Bioprocess & Biosystems Engineering,2010,33(8):937-945.
[38] Huang Liping,Chai Xiaolei,Chen Guohua,et al.Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells[J].Environmental Science & Technology,2011,45(11):5025-5031.
[39] Hsu L,Masuda S A,Nealson K H,et al.Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination[J].RSC Advances,2012,2(13):5844-5855.
[40] Stefano Freguia,Seiya Tsujimura,Kenji Kano.Electron transfer pathways in microbial oxygen biocathodes[J].Electrochimica Acta,2009,55(3):813-818.
[41] Li Y,Wu Y,Puranik S,et al.Metals as electron acceptors in single-chamber microbial fuel cells[J].Journal of Power Sources,2014,269:430-439.
[42] Wu X,Zhu X,Song T,et al.Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell[J].Bioresource Technology,2015,180:185-191.
[43] Boggs Bryan K,King Rebecca L,Botte Gerardine G.Urea electrolysis:direct hydrogen production from urine[J].Chemical Communications (Cambridge,England),2009(32):4859-4861.
[44] Lan R,Tao S,Irvine J T S.A direct urea fuel cell-power from fertilizer and waste[J].Energy & Environmental Science,2010,3(4):438-441.
[45] Xu W,Zhang H,Li G,et al.Aurine/Cr(Ⅵ) fuel cell-electrical power from processing heavy metal and human urine[J].Electroanalytical Chemistry,2016,764:38-44.
[46] Sindhuja M,Harinipriya S,Bala A C,et al.Environmentally available biowastes as substrate in microbial fuel cell for efficient chromium reduction[J].Journal of Hazardous Materials,2018,355:197-205.
[47] Mu Chunxia,Wang Lin,Wang Li.Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production[J].Environmental Science and Pollution Research International,2020,27:25140-25148.
[48] Wang Q,Huang L,Pan Y,et al.Impact of Fe(Ⅲ) as an effective electron-shuttle mediator for enhanced Cr(Ⅵ) reduction in microbial fuel cells:reduction of diffusional resistances and cathode overpotentials[J].Journal of Hazardous Materials,2017,321:896-906.
[49] Wu X,Li C,Lv Z,et al.Positive effects of concomitant heavy metals and their reduzates on hexavalent chromium removal in microbial fuel cells[J].RSC Advances,2020,10(26):15107-15115.