新材料与新技术

剪切增稠胶/碳酸钙复合材料的制备及其抗冲击性能研究

展开
  • 1.山东非金属材料研究所,济南250031;
    2.军事科学院系统工程研究院军事新能源技术研究所,北京102300
宗昊(1996-),男,硕士研究生,主要从事功能防护材料研究工作,E-mail:zonghaoer@163.com。

收稿日期: 2020-09-27

  修回日期: 2021-01-25

  网络出版日期: 2021-05-10

基金资助

山东省自然科学基金(ZR2019PEM013)

Preparation and impact resistance of STG/CaCO3 composite

Expand
  • 1. Shandong Institute of Nonmetallic Materials,Jinan 250031;
    2. Institute of Military New Energy Technology,Institute of Systems Engineering,Academy of Military Sciences,Beijing 102300

Received date: 2020-09-27

  Revised date: 2021-01-25

  Online published: 2021-05-10

摘要

为了提升人体防护装备的轻便性和灵活性,以剪切增稠胶(STG)为基体,并用纳米CaCO3对其进行补强,制备了缓冲吸能性能优异的剪切增稠STG/CaCO3复合材料,研究了CaCO3含量和粒径对STG剪切增稠性能的影响。结果表明:添加CaCO3后复合材料的最大储能模量比未添加时增加455%;添加的CaCO3粒径越小,复合材料的剪切增稠性能越优异。通过落锤冲击实验表征了复合材料的抗冲击性能,CaCO3的填充可使复合材料在具有最小变形量的情况下吸收更多的冲击力。探究了STG剪切增稠和CaCO3补强的作用机理,指出剪切增稠现象是由交联键的形成和分子链的缠结作用产生的,CaCO3通过吸能阻裂,分散冲击力产生补强作用。

本文引用格式

宗昊, 魏汝斌, 甄建军, 董彬, 翟文, 李万利 . 剪切增稠胶/碳酸钙复合材料的制备及其抗冲击性能研究[J]. 化工新型材料, 2021 , 49(3) : 99 -103 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.03.022

Abstract

In order to improve the portability and flexibility of protective equipment,a shear thickened gel(STG)/CaCO3 composite material with excellent buffering and energy absorption performance was prepared by using STG as matrix and reinforced by nano-CaCO3.The effect of CaCO3 addition and particle size on the shear thickening performance of STG was studied.The results shown that the maximum energy storage modulus (Gmax) of the material after CaCO3 addition was 4.55 times higher than that without CaCO3.The smaller the particle size of CaCO3 addition was,the better the shear thickening performance of the material will be.The impact resistance of the material was characterized through the impact test with a drop hammer.CaCO3 could make the material absorb more impact force with the minimum deformation.The mechanism of shear thickening of STG was investigated,and it was pointed out that the effect of shear thickening was caused by the synergistic effect of the formation of crosslinking bonds and the entanglement of molecular chains.CaCO3 generated reinforcement by preventing cracks,absorbing energy and dispersing impact force.

参考文献

[1] Zhang G M,Batra R C,Zheng J.Effect of frame size,frame type,and clamping pressure on the ballistic performance of soft body armor[J].Composites Part B:Engineering,2008,39(3):476-489.
[2] 咸兴平,刘禄胜,于静.防弹衣的防护机理及防护性能分析[J].中国个体防护装备,2007(2):22-24.
[3] Wang Y,Gong X,Xuan S.Study of low-velocity impact response of sandwich panels with shear-thickening gel cores[J].Smart Materials and Structures,2018,27(6):65008.
[4] 付倩倩,俞科静,夏艳丽,等.剪切增稠胶/超高分子量聚乙烯复合材料低速冲击性能研究[J].化工新型材料,2019,47(12):62-65;70.
[5] Wang S,Xuan S,Liu M,et al.Smart wearable kevlar-based safeguarding electronic textile with excellent sensing performance[J].Soft Matter,2017,13(13):2483-2491.
[6] 夏艳丽.基于剪切增稠胶的柔性防护复合材料的制备及低速抗冲击性能研究[D].无锡:江南大学,2018.
[7] Jiang W,Gong X,Wang S,et al.Strain rate-induced phase transitions in an impact-hardening polymer composite[J].Applied Physics Letters,2014,104(12):121915.
[8] Liang J,Zhang X.Rheological properties of SP in shock transmission application[J].Journal of Materials in Civil Engineering,2015,27(9):4014250.
[9] Palmer R M,Green P C.Energy absorbing material:US,7794827[P].2010-09-14.
[10] 郭智臣.杜邦携手英国D30公司开发新型多用途塑料防护材料[J].化学推进剂与高分子材料,2016,14(4):68-68.
[11] 徐晓锋.新材料D3O造就的神奇滑雪服[J].中国纤检,2006(5):48.
[12] Tian T F,Li W H,Ding J,et al.Study of shear-stiffened elastomers[J].Smart Materials and Structures,2012,21(12):125009.
[13] Wang S,Jiang Wanquan,Jiang Weifeng,et al.Multifunctional polymer composite with excellent shear stiffening performance and magnetorheological effect[J].Journal of Materials Chemistry C,2014,2(34):7133-7140.
[14] 王天强,李冈效,王腾腾,等.纳米活性碳酸钙对室温硫化硅橡胶补强作用研究[J].有机硅材料,2017,31(3):154-159.
[15] Obada D O,Kuburi L S,Dauda M,et al.Effect of variation in frequencies on the viscoelastic properties of coir and coconut husk powder reinforced polymer composites[J].Journal of King Saud University:Engineering Sciences,2020,32(2):148-157.
[16] Rietjens M,Steenbergen P A.Crosslinking mechanism of boric acid with diols revisited[J].European Journal of Inorganic Chemistry,2005,2005(6):1162-1174.
[17] Wick M.Bor-haltige siloxan-elastomer[J].Angewandte Chemie-Intrnational Edition,1960,72:455-455.
[18] 柏至伟,张治斌,张雅娟,等.基于配位键交联的自修复弹性体的合成及表征[J].功能高分子学报,2020,33(2):180-186.
[19] 魏绪玲,付含琦,郑聚成,等.橡胶补强填料的研究进展[J].高分子通报,2014(2):31-35.
Options
文章导航

/