综述与专论

基于仿生技术的高强度复合材料的研究进展

展开
  • 1.浙江农林大学工程学院,杭州311300;
    2.国家木质资源综合利用工程技术研究中心,杭州311300
郎俊彬(1997-),男,硕士研究生,主要从事生物质复合材料与纳米材料的研究。

收稿日期: 2019-11-29

  修回日期: 2021-01-04

  网络出版日期: 2021-05-10

基金资助

国家自然科学基金(51605446);博士后面上基金项目(2018M630671)

Research progress on high-strength composite materials based on bionic technology

Expand
  • 1. Department of Materials,College of Engineering,Zhejiang A&F University,Hangzhou 311300;
    2. National Engineering and Technology Research Center of Wood-based Resources Comprehensive Utilization,Hangzhou 311300

Received date: 2019-11-29

  Revised date: 2021-01-04

  Online published: 2021-05-10

摘要

自然界造物的方式是人们制备高强度复合材料的榜样,自然材料的优异特性可以归结为长期自然进化和自然选择条件下所形成多尺度的多级组装结构。阐述了目前研究较多的仿生技术的特点,挖掘了这几类仿生材料的主要组成成分和多级结构实现高强度的机制,重点论述四大类仿生高强度复合材料:基于植物的仿生复合材料、基于动物的仿生复合材料、基于细菌的仿生复合材料、基于天然矿石的仿生复合材料的制备过程和增强机制的研究;揭示了通过仿生手段实现复合材料高强度的原理,并指出其应用领域和目前研究中存在的问题。

本文引用格式

郎俊彬, 刘丽娜, 傅深渊 . 基于仿生技术的高强度复合材料的研究进展[J]. 化工新型材料, 2021 , 49(3) : 22 -26 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.03.006

Abstract

The way nature creates extreme materials is worth studying.The excellent properties of natural materials can be attributed to the formation of multi-scale structures assembled under the conditions of long-term natural evolution and natural selection.The characteristics of several bionic materials were focused,and trying to dog out the main components of several types of bionic materials and strategies for realizing high-strength.Among them,four major categories were discussed: bionic composites based-plant,based-animal,based-bacterial and based-natural ore,respectively.It revealed some important factors and solutions that affected the strength of the composites,and also listed application fields of these materials.The problems in present studies were also summarizedat the end.

参考文献

[1] Riehle F,Hoenders D,Guo J,et al.Sustainable chitin nanofibrils provide outstanding flame-retardant nanopapers[J].Biomacromolecules,2019,20(2):1098-1108.
[2] 焦大,刘增乾,张哲峰.自然界“军备竞赛”中的材料科学[J].自然杂志,2019,41(5):313-324.
[3] Li T T,Wang H,Huang S Y,et al.Bioinspired foam composites resembling pomelo peel:structural design and compressive,bursting and cushioning properties[J].Composites Part B:Engineering,2019,172:290-298.
[4] Trujillo E,Moesen M,Osorio L,et al.Bamboo fibres for reinforcement in composite materials:strength Weibull analysis[J].Composites Part A,2014,61:115-125.
[5] Sharma B,Gatóo A,Bock M,et al.Engineered bamboo for structural applications[J].Constr Build Mater,2015,81:66-73.
[6] Fu J,Liu Q,Liu F K,et al.Design of bionic-bamboo thin-walled structures for energy absorption[J].Thin-Walled Structures,2019,135:400-413.
[7] 刘念.基于差厚技术和仿生设计的轿车吸能结构抗撞性能研究[D].长春:吉林大学,2018.
[8] Xu T,Liu N,Yu Z,et al.Crashworthiness design for bionic bumper structures in spired by cattail and bamboo[J].Applied Bionics and Biomechanics,2017,(2017):1-9.
[9] Zorzetto L,Ruffoni D.Wood-inspired 3D-printed helical composites with tunable and enhanced mechanical performance[J].Advanced Functional Materials,2019,29(1):1805888.
[10] Naleway S E,Porter M M,McKittrick J,et al.Structural design elements in biological materials:application to bioinspiration[J].Advanced Materials,2015,27(37):5455-5476.
[11] Meyers M A,McKittrick J,Chen P Y.Structural biological materials:critical mechanics-materials connections[J].Science,2013,339(6121):773-779.
[12] Chen P Y,Stokes A G,McKittrick J.Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis)[J].Acta Biomaterialia,2009,5(2):693-706.
[13] 方仲祺.鹿角多级结构及其力学性能研究[D].重庆:重庆大学,2018.
[14] Yang L K,Shen P,Guo R F,et al.A novel strategy for fabricating biomimetic gradient metal-ceramic composites by dynamic freeze casting and pressure infiltration[J].Scripta Materialia,2019,167:101-104.
[15] Tang Y,Wu C,Zhao K.Fabrication of lamellar porous alumina with graded structures by combining centrifugal and directional freeze casting[J].Ceramics International,2017:5794-5798.
[16] 董晶,赵坤伟,程金亮,汪亮.蜘蛛丝纤维的研究现状与展望[J].现代纺织技术,2019,27(1):15-19.
[17] Thierry,Lefèvre,Michèle,et al.Spider silk as a blueprint for greener materials:a review[J].International Materials Reviews,2016,61(2):127-153.
[18] Koeppel A,Holland C.Progress and trends in artificial silk spinning:a systematic review[J].ACS Biomaterials Science & Engineering,2017,3(3):226-237.
[19] Zhang X,Liu W,Yang D,et al.Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance[J].Advanced Functional Materials,2019,29(4):1806912.
[20] Wang H,Gu D,Lin K,et al.Compressive properties of bio-inspired reticulated shell structures processed by selective laser melting[J].Advanced Engineering Materials,2019,21(4):1801168.
[21] Hu D,Wang Y,Song B,et al.Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing[J].Composites Part B:Engineering,2019,162:21-32.
[22] Huang H,He P,Huang T,et al.Electrochemical strategy for flexible and highly conductive carbon films:the role of 3-dimensional graphene/graphite aggregates[J].ACS Applied Materials & Interfaces,2018,11(1):1239-1246.
[23] Shahzadi K,Mohsin I,Wu L,et al.Bio-based artificial nacre with excellent mechanical and barrier properties realized by a facile in situ reduction and cross-linking reaction[J].ACS Nano,2017,11(1):325-334.
[24] 陈锦祥.甲虫前翅仿生应用基础研究二十年:内部结构、模型及其一体化蜂窝板[J].中国科学:技术科学,2018,48(7):701-718.[25] Yu X,Pan L,Chen J,et al.Experimental and numerical study on the energy absorption abilities of trabecular-honeycomb biomimetic structures inspired by beetle elytra[J].Journal of materials science,2019,54(3):2193-2204.
[26] Tuo W,Wei P,Chen J,et al.Experimental study of the edgewise compressive mechanical properties of biomimetic fully integrated honeycomb plates[J].Journal of Sandwich Structures & Materials,2019,21(8):2735-2750.
[27] Valentini L,Bon S B,Signetti S,et al.Fermentation based carbon nanotube multifunctional bionic composites[J].Scientific Reports,2016,6:27031.
[28] Valentini L,Bittolo Bon S,Signetti S,et al.Graphene-based bionic composites with multifunctional and repairing properties[J].ACS Appl Mater Interfaces,2016:7607-7612.
[29] Jonas R,Farah L.Production and application of microbial cellulose[J].Polymer Degradation and Stability,1998,59(1-3):101-106.
[30] Park W I,Kim H S,Kwon S M,et al.Synthesis of bacterial celluloses in multiwalled carbonnanotube-dispersed medium[J].Carbohydrate Polymers,2009,77(3):457-463.
[31] Han S C,Kang D S,Kang K.Two nature-mimicking auxetic materials with potential for high energy absorption[J].Materials Today,2019,26:30-39.
[32] Alderson A,Evans K E.Molecular origin of auxetic behavior in tetrahedral framework silicates[J].Physical Review Letters,2002,89(22):225503.
Options
文章导航

/