开发与应用

纳米粒子的分散稳定性研究进展

展开
  • 重庆工商大学废油资源化技术与装备教育部工程研究中心,重庆400067
路元坤(1996-),男,硕士研究生,主要研究方向为固体废弃物材料。

收稿日期: 2020-01-17

  修回日期: 2021-01-21

  网络出版日期: 2021-05-07

基金资助

重庆市技术创新与应用示范项目(cstc2018jscx-msyb0708);重庆市教委资助项目(KJQN201800822、KJQN201800816、KJZD-K201800801)

Advance in the study of dispersion stability of nanoparticle

Expand
  • Engineering Research Center for Waste Oil Recycling Technology and Equipment, Chongqing University of Commerce and Industry,Chongqing 400067

Received date: 2020-01-17

  Revised date: 2021-01-21

  Online published: 2021-05-07

摘要

纳米粒子的应用一直受到人们的关注,但由于其在溶液中极易团聚沉降,常常需要进行表面改性以增强其分散稳定性。主要从纳米粒子分散团聚机理出发,总结归纳了纳米粒子改性的方法和分散稳定性的评价方法,指出目前研究存在的不足,并展望了未来研究方向。

本文引用格式

路元坤, 欧阳平 . 纳米粒子的分散稳定性研究进展[J]. 化工新型材料, 2021 , 49(4) : 262 -266 . DOI: 10.19817/j.cnki.issn1006-3536.2021.04.057

Abstract

The application of nano-particles has always attracted people's attention,but because nano-particles are easy to aggregate and settle in solution,surface modification of nanoparticles is often needed to enhance its dispersion stability.Based on the mechanism of dispersion and agglomeration of nanoparticles,the modification methods of nanoparticles and the evaluation methods of dispersion stability were summarized.

参考文献

[1] Balog S,Dominic A,Urban D A,et al.Taylor dispersion of nanoparticles[J].Journal of Nanoparticle Research,2017,19(8):287.
[2] Gisela K,Michael H,Lorenz S.Conductive core-shell particals:an approach to self-assembled mesoscopicwires[J].Advanced Materials,2003(15):1113-1118.
[3] Song X L,Wang H B,W X L,et al.Research and development of dispersion technique for nanoparticles[J].Chemical Industry and Engineering Progress,2005,24(1):47-52.
[4] 杨金龙,吴建光.陶瓷粉末颗粒测试、表征及分散[J].硅酸盐通报,1995(5):67-77.
[5] 王九,陈波水,黄维九.纳米粒子添加剂在润滑剂中的应用与开发[J].江苏化工,2001,29(3):13-17.
[6] Yan C,Renner P,Hong L.Dispersion of nanoparticles in lubricating oil:a critical review[J].Lubricants,2019,7(1):7.
[7] Pierre R,Fabrice D,Fabrice V,et al.An investigation on the reduced ability of IF-MoS2 nanoparticles to reduce friction and wear in the presence of dispersants[J].Tribology Letters,2014,55(3):503-516.
[8] Homola A,Lorenz M,Mastrangelo C,et al.Novel magnetic dispersions using silica stabilized particles[J].IEEE Transactions on Magnetics,1986,22(5):716-719.
[9] Pan R J,Pan S H,Zhou J Y,et al.Surface-modification of indium tin oxide nanoparticles with titanium dioxide by a nonaqueous process and its photocatalytic properties[J].Applied Surface Science,2009,255(6):3642-3647.
[10] 黄威.高分散性纳米二硫化钼的制备及摩擦学性能研究[D].淮北:淮北师范大学,2019.
[11] Yan J,Hui Z,Tao L,et al.Tribological performance and surface analysis of a borate calcium as additive in lithium and polyurea greases[J].Tribology Transactions,2016,60(4):1-31.
[12] Yan J,Bai X,Li J,et al.The tribochemical study of novel phosphorous-nitrogen (P—N) type phosphoramidate additives in water[J].Industrial Lubrication & Tribology,2014,66(3):346-52.
[13] Li Z,Ma S,Zhang G,et al.Soft/hard-coupled amphiphilic polymer nanospheres for water lubrication[J].ACS Appl Mater Interfaces,2018,10(10):9178-9187.
[14] 严冲.不同形貌纳米金属铜、镍的制备、分散及摩擦性能研究[D].镇江:江苏大学,2010.
[15] 章金兵,许民,周小英.抗紫外纳米ZnO/TiO2粉体的氧化铝表面改性[J].精细化工,2006,23:414-416.
[16] 王俊.爆轰纳米金刚石颗粒分散及摩擦性能研究[D].大连:大连理工大学,2014.
[17] 牟国俊,赵斌.润滑油中无机纳米添加剂的研究进展[J].润滑油,2004,19(1):59-61.
[18] 徐建林,淡小敏,王程程,等.不同粒径的锑纳米颗粒在润滑油中的分散性与摩擦性能[J].材料热处理学报,2016,37(8):209-214.
[19] Xue R J,Wu Y C.Surface modification of nano-alumina with silane coupling agent[J].Chinese Journal of Applied Chemistry,2007,24(11):1236-1239.
[20] Xu J R,Luo Q.Settling of solid partieles in hydroeyelone[J].Technology for Chemical Mines,1997,26(2):20-23.
[21] Lukas B,Sebastian Z,KatjaT,Dario A.An oil-based lubrication system based on nanoparticular TiO2 with superior friction and wear properties[J].Tribology Letters,2015,59(2):29.
[22] 贾云刚.纳米润滑材料及表面改性的研究[D].大庆:东北石油大学,2006.
[23] Wright R A E,Wang K W,Qu J,Zhao B.Oil-soluble polymer brush grafted nanoparticles as effective lubricant additives for friction and wear reduction[J].Angewandte Chemie Chemie),2016,55,8656-8660.
[24] Seymour B T,Wright R A,Parrott A C,et al.Poly (alkylmethacrylate) brush-grafted silica nanoparticles as oil lubricant additives:effects of alkyl pendant groups on oil dispersibility,stability,and lubrication property[J].ACS Appl Mater Interfaces,2017,9,25038-25048.
[25] Xu J L,Wang J,Niu L,et al.Effect of particle size on dispersibility of antimony nanoparticles in lubricating oil[J].Synthesis and Reactivity in Inorganic,Metal-Organic,and Nano-Metal Chemistry,2016,46(4):477-482.
[26] 王青宁,司宝莉,俞树荣.复配表面活性剂对纳米铜粉在润滑油中分散稳定性的研究[J].日用化学工业,2008,38(4):219-222.
[27] 张丽秀,李文旭,魏晓奕,等.超声分散对石墨烯润滑油分散稳定性影响的仿真与实验研究[J].机械科学与技术,2020,39(7):1014-1021.
[28] Li S,Li H Y,Li Z K,et al.Fabrication of SiO2 wrapped polystyrene microcapsules by Pickering polymerization for self-lubricating coatings[J].Journal of Colloid and Interface Science,2018,528:92-99.
[29] 贾魏玮.纳米MC颗粒在溶剂中分散稳定性的研究[D].南京:南京理工大学,2012.
[30] Olhero S M,Ferreira J M F.Influence of partical size distribution on rheology and particalpacking of silica-based suspensions[J].Powder Technology,2004,139(1):69-75.
[31] Maranzano B J,Wagner N J.The effects of interpartical interactions and partical sizeon reversible shear thickening:hard-sphere colloidal dispersions[J].Journal of Rheology,2001,45(5):1205-1222.
[32] Mondragon R,Enrique J J,Barba A,et al.Determination of the packing fraction of silica nanoparticles from the rheological and viscoelastic measurements of nanofluids[J].Chemical Engineering Science,2012(80):119-127.
[33] Abdolrasouli M H,Behzadfar E,Sharif F.Effect of solid loading and aggregate size on the rheological behavior of PDMS/calcium carbonate suspensions[J].Brazilian Journal of Chemical Engineering,2009,26(4):713-721.
[34] Moreira J L,Santana P C,Feliciano A S,et al.Effect of viscosity upon hydrodynamically controlled natural aggregates of animal cells grown in stirred vessels[J].Biotechnology Progress,2008,11(5):575-583.
[35] Xu Y,Gong X,Peng C,et al.Shear thickening fluids based on additives with different concentrations and molecular chain length[J].Chinese Journal of Chemical Physics,2010,23(3):342.
Options
文章导航

/