新材料与新技术

半导体α-Fe2O3纳米微球的可控合成及气敏性能条件优化

展开
  • 齐齐哈尔医学院药学院,齐齐哈尔161006
付双(1980-),女,硕士,副教授,从事纳米材料的气敏性能研究工作,E-mail:fsjt1980@163.com。

收稿日期: 2019-11-29

  修回日期: 2021-01-19

  网络出版日期: 2021-05-07

基金资助

齐齐哈尔市科学技术计划项目(GYGG-201703)资助

Controlled synthesis of α-Fe2O3 semiconductor nanospheres and optimization of gas sensing performance condition

Expand
  • College of Pharmacy,Qiqihar Medical University,Qiqihar 161006

Received date: 2019-11-29

  Revised date: 2021-01-19

  Online published: 2021-05-07

摘要

采用溶剂热的合成路线,制备了α-Fe2O3多级结构的纳米微球。重点考察了α-Fe2O3多级结构纳米微球的可控合成及气敏性能条件优化。结果表明,在气敏测试温度为150℃时,合成温度为150℃,反应时间为12h,HNO3的加入量为5mL,前驱体在300℃下焙烧2h得到的α-Fe2O3纳米微球,其对10×10-6 H2S气体的气敏响应值可达到10Ra/Rg,是理想的H2S气敏传感器材料。

本文引用格式

付双, 李红梅, 孙革, 潘虹, 孙明睿 . 半导体α-Fe2O3纳米微球的可控合成及气敏性能条件优化[J]. 化工新型材料, 2021 , 49(4) : 84 -87 . DOI: 10.19817/j.cnki.issn1006-3536.2021.04.018

Abstract

Nano-microspheres with α-Fe2O3 structure were prepared by solvothermal synthesis.The controllable synthesis of α-Fe2O3 multi-level nanometer microspheres and optimization of gas-sensitive performance conditions were focused.The results shown that when the gas-sensitive test temperature was 150℃,the synthesis temperature was 150℃,the reaction time was 12h,the amount of HNO3 added was 5mL,and the α-Fe2O3 nanospheres obtained by calcining the precursor at 300℃ for 2h were ideal H2S gas-sensitive sensor material,its gas-sensitive response value to 10ppm H2S gas can reach 10Ra/Rg.

参考文献

[1] Gao L.One-pot synthesis of Fe2O3/PEDOT/rGO nanocomposite for sensitive determination of caffeine[J].International Journal of Electrochemical Science,2018,13:6791-6802.
[2] 林珑,吕程,李海.α-MoO3纳米棒的制备及其NOx气敏研究[J].化工新型材料,2019,47(6):117-120.
[3] 王茉,李晓伟,邵长路,等.p-CuO/n-In2O3异质结纳米纤维的制备及气敏特性[J].高等学校化学学报,2017,38(9):1524-1530.
[4] Wang Z,Hou C,De Q,et al.One-step synthesis of Co-Doped In2O3 nanorods for high response of formaldehyde sensor at low temperature[J].ACS Sensors,2018,3(2):468-475.
[5] 白宇舟,郑哲蔚,石佳凝,等.Nb2O5半导体纳米材料形貌调控与气体敏感性能研究[J].化工新型材料,2019,47(7):53-57.
[6] 陆希峰,朱玲玲,满杰,等.α-氧化铁纳米花的合成、表征与气敏性能研究[J].无机盐工业,2017,49(9):35-37.
[7] 杨卓,梅华,陈晓蓉,等.Fe2O3/Ni2O3/Al2O3催化剂制备及其催化氧化靛蓝废水研究[J].无机盐工业,2012,44(10):61-64.
[8] Moniz S J A,Blackman C S.Visible-light driven water splitting over BiFeO photoanodes grown via the LPCVD reaction of [Bi(OtBu)] and [Fe(OtBu)] and enhanced with a surface nickel oxygen evolution catalyst[J].Nanoscale,2015,7(39):16343-16353.
[9] 孟庆华,朱亦仁,顾绍玲,等.纳米α-Fe2O3合成及光催化法处理染料中间体废水[J].无机盐工业,2011,43(1):48-51.
[10] Sriram S,Nagarajan V,Chandiramouli R.H2S and NH3,adsorption characteristics on CoO nanowire molecular device-a first-principles study[J].Chemical Physics Letters,2015,636:51-57.
[11] Qi Q,Zou Y C,Fan M H,et al.Trimethylamine sensors with enhanced anti-humidity ability fabricated from La0.7Sr0.3FeO3 coated In2O3-SnO2 composite nanofibers[J].Sensors & Actuators B Chemical,2014,203(21):111-117.
[12] Dong B,Zhang H Q,Kong A,et al.Synthesis of urchin-like FeF2 nanoarchitectures and their conversion into three dimensionalurchinlike mesoporous α-Fe2O3 nanoarchitectures for methane activation[J].European Journal of Inorganic Chemistry,2014,2014(28):4779-4787.
[13] 杜庆波.α-Fe2O3微球的合成、表征及光催化性能研究[J].化工新型材料,2016(12):132-133.
[14] 李振民.氧化铁基纳米结构的控制合成及其气敏性能研究[D].北京:中国科学院过程工程研究所,2009.
[15] 孙亚利.α-Fe2O3的形貌控制合成和性能研究[D].镇江:江苏大学,2016.
Options
文章导航

/