以市面常见的6种碳纤维发热电缆为实验材料,利用拉曼光谱技术对实验材料的石墨化程度进行表征,利用数字源表(吉时利2400型)测定每组样品的电阻,以得到样品的电阻率。结果表明:当碳纤维的石墨化程度越高时,其电阻率越低。这是因为石墨化程度越高时,碳纤维成分中石墨碳的含量越高,与此同时碳纤维中非晶态过渡碳结构的芳环共轭程度增加,使π电子的迁移能力增强。随着碳纤维石墨化程度的增加,六元碳层面内的碳碳键距离增大,共价电子向传导电子转移,禁带变小,导带增大。另外,石墨化程度的增加意味着在碳纤维内部石墨的取向越来越好,故而致使电阻率降低。
Six kinds of common carbon fiber(CF) heating cables on the market were used as experimental materials.The graphitization degree of the materials was characterized by raman spectroscopy,and measuring the resistance of each group of samples with ghisley 2400.The results shown that the higher the graphitization degree of CF,the lower the resistivity of the sample.This was because the higher the graphitization degree,the higher the content of graphite carbon in the CF composition.At the same time,the degree of aromatic ring conjugation of amorphous carbon structure in CF increased,which made the π electron migration ability enhanced.In addition,with the increase of graphitization degree,the carbon bond distance in the six carbon layer increased.When covalent electrons transfered to conduction electrons,the band gap decreased and the conduction band increased.Finally,the increasing graphitization degree meant that the orientation of graphite inside the CF was getting better and better,so the resistivity was reduced.
[1] 贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1995,1-2.
[2] 高爱君.PAN基碳纤维成分、结构及性能的高温演变机理[D].北京:北京化工大学,2012.
[3] 高志斌,孙士博.某机场沥青混凝土路面融雪化冰技术研究[J].低温建筑技术,2017,39(11):28-32.
[4] Pesce P,Lagazzo A,Barberis F,et al.Mechanical characterisation of multi vs.uni-directional carbon fiber frameworks for dental implant applications[J].Materials Science and Engineering,2019(102):186-191.
[5] 温月芳,曹霞,杨永岗,等.PAN预氧化纤维的炭化过程[J].新型炭材料,2008(2):121-126.
[6] 贺福.用拉曼光谱研究碳纤维的结构[J].高科技纤维与应用,2005(6):20-25.
[7] 石彦平.拉曼光谱研究碳纤维的微观结构和性能[D].上海:东华大学,2011.
[8] Sui Xianhang,Xu Zhiwei,Hu Chuansheng,et al.Microstructure evolution in γ-irradiated carbon fibers revealed by a hierarchical model and Raman spectra from fiber section[J].Composites Science and Technology,2016(130):46-52.
[9] Ran Min,Jia Lishaung,Cheng Chaoge,et al.Temperature-variable Raman scattering study on micromechanical properties of the carbon fiber reinforced polyimide composite film[J].New Carbon Materials,2019,34(1):105-109.
[10] 杜刚,肖加余,江大志,等.碳纤维强度的统计特性及对复合材料线芯力学性能的影响[J].国防科技大学学报,2014,36(1):52-56.
[11] Andrew M,Sarvenaz G,Guillaume S.Improving compressive strength of high modulus carbon-fiber reinforced polymeric composites through fiber hybridization International[J].Journal of Engineering Science,2019(142):145-157.
[12] Hwang Daekyun,Cho Donghwan.Fiber aspect ratio effect on mechanical and thermal properties of carbon fiber/ABS composites via extrusion and long fiber thermoplastic processes[J].Journal of Industrial and Engineering Chemistry,2019(80):335-344.
[13] Dimitrios M,James J M,Jake M,et al.Novel carbon-fibre powder-epoxy composites:interface phenomena and interlaminar fracture behavior[J].Composites Part B:Engineering,2019(174):13.
[14] Lin C L,Cheng Y H,Liu Z S,et al.Metal catalysts supported on activated carbon fibers for removal of polycyclic aromatic hydrocarbons from incineration flue gas[J].Journal of Hazardous Materials,2011(197):254-263.
[15] Wang Xuhong,Hu Xiuli,Huang Jialei,et al.Electrospinning synthesis of porous carbon fiber supported Pt-SnO2 anode catalyst for direct ethanol fuel cell[J].Solid State Sciences,2019(94):64-69.
[16] Gupta A K,Russin T J,Gutiérrez H R,et al.Probing graphene edges via Raman scattering[J].ACS Nano,2009(3):45-52.
[17] Ni Z H,Yu T,Luo Z Q,et al.Probing charged ipurities in suspended graphene using Raman spectroscopy[J].ACS Nano,2009(3):569-574.
[18] 赵瑞雪.PAN基碳纤维预氧丝的制备与结构研究[D].长春:吉林大学,2018.
[19] 马德柱,何平笙,徐种德,等.高聚物的结构与性能[M].北京:科学出版社,2004,394-422.
[20] Raman A P,Shin W,Fan S H.Metamaterial band theory:fundamentals & applications[J].Science China Information Sciences,2013,56(12):1-14.