为了提升相变大胶囊导热性能,拓展相变材料应用范围,通过将石墨烯与海藻酸钠、相变微胶囊共混,并由钙离子交联后制得石墨烯改性相变大胶囊。通过拉曼光谱、扫描电镜表征石墨烯改性相变大胶囊组分及微观结构,通过差式扫描量热仪分析其相变储能性能,并比较了石墨烯改性后样品导热系数的变化。结果表明:石墨烯改性相变大胶囊是由海藻酸钠凝胶连接成簇相变微胶囊,并由石墨烯穿插其中。制备的石墨烯改性相变大胶囊包覆率为58.8%~63.6%,相变潜热为112.5~121.7J/g范围内,石墨烯的添加对相变大胶囊包覆率、相变潜热及相变温度影响不显著。经过石墨烯改性后的相变大胶囊导热系数显著提升,但随着石墨烯添加量的增加其导热系数提升效果降低。所制石墨烯改性相变大胶囊在不显著改变其相变储热性能的同时提升了导热性能,提高了相变大胶囊的换热效率,为进一步开发高性能相变储能发泡材料提供了技术支持。
In order to improve the thermal conductivity of phase change macrocapsules and expand the application range of phase change materials,a graphene(rGO) modified phase change macrocapsule was prepared by blending graphene,phase change microcapsules and sodium alginate gel.The Raman spectrum and scanning electron microscope (SEM) were used to characterizing the component and micromorphology of the prepared macrocapsules,and also discussed the thermal storage and thermal conduction performances.The results indicated that the prepared macrocapsules were composed of phase change microcapsules and sodium alginate gel,and the rGO interspersed in the sodium alginate gel.The encapsulation rate of prepared macrocapsules was 58.8%~63.6%,the phase change latent heat was 112.5~121.7J/g.It can be observed that the thermal storage performance of macrocapsules was insignificantly affected by the blending of rGO.More importantly,the thermal conduction obviously increased with the increase of rGO content,although the improvement effect was degenerative.Thus,the prepared macrocapsules improved the thermal conduction of macrocapsules while the thermal storage performance was stable.The prepared macrocapsules will optimize thermal exchange efficiency of phase change materials,and provided a technical base for the development of phase change foam.
[1] 王鑫,方建华,刘坪,等.相变材料的研究进展[J].功能材料,2019,50(2):2070-2075.
[2] Han P J,Qiu X L,Lu L X,et al.Fabrication and characterization of a new enhanced hybrid shell microPCM for thermal energy storage[J].Energy Conversion and Management,2016,126:673-685.
[3] 汪婷,王鸿博,傅佳佳,等.MUF/十八烷相变微胶囊的制备与性能研究[J].化工新型材料,2020,48(6):211-215.
[4] Tyagi V V,Kaushik S C,Tyagi S K,et al.Development of phase change materials based microencapsulated technology for buildings:a review[J].Renewable and Sustainable Energy Reviews,2011,15(2):1373-1391.
[5] Sun N,Xiao Z.Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage[J].Journal of Materials Ence,2016,51(18):8550-8561.
[6] Cano D,Funéz C,Rodriguez L,et al.Experimental investigation of a thermal storage system using phase change materials[J].Applied Thermal Engineering,2016,107:264-270.
[7] 丁泽,陈昭朋,张凯,等.相变微胶囊/环氧树脂复合泡沫的制备及性能[J].高分子材料科学与工程,2019,35(1):136-141.
[8] 韩鹏举,卢立新,丘晓琳.掺杂相变微胶囊的聚氨酯发泡材料的制备与表征[J].化工新型材料,2017,45(9):80-82.
[9] Han P J,Lu L X,Qiu X L,et al.Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage[J].Energy,2015,91:531-539.
[10] 韩鹏举.基于控温包装的相变胶囊及其复合材料的制备与性能研究[D].无锡:江南大学,2017.
[11] Wu B,Zheng G,Chen X.Effect of graphene on the thermophysical properties of melamine-urea-formaldehyde/N-hexadecane microcapsules[J].RSC Advances,2015,5(90):74024-74031.
[12] Wang X,Chen Z,Xu W,et al.Capric acid phase change microcapsules modified with graphene oxide for energy storage[J].Journal of Materials Science,2019,54(24):14834-14844.
[13] 陈中华,罗姚.氧化石墨烯改性十二醇/PMMA相变微胶囊的制备及其对涂层隔热性能的影响[J].电镀与涂饰,2020,39(4):195-200.
[14] 张海林,杨善让,王升龙,等.锅炉尾部受热面积灰层有效导热系数的热逾渗模型[J].中国机电工程学报,2005,25(2):477-481.
[15] 郝思嘉,李哲灵,任志东,等.拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J].材料工程,2020,48(7):45-60.
[16] 郝志显,程艺艺,王乐乐,等.表面活性剂存在条件下脲醛树脂微球的合成反应过程[J].化学学报,2012,70(3):331-338.
[17] 贝克.微型毛细管平衡釜及原位拉曼光谱联用研究模拟地质条件下CO2-石油模型化合物膨胀规律[D].杭州:浙江工业大学,2017.
[18] 杨洁钰,曾凡坤,钟金锋,等.海藻酸钠没食子酸衍生物的制备及性能分析[J].食品与机械,2019,35(3):137-143.