综述与专论

静电纺纳米纤维在化学战剂“防消一体化”中的研究进展

展开
  • 1.北京市工业典型污染物资源化处理重点实验室,北京科技大学能源与环境工程学院,北京100083;
    2.国民核生化灾害防护国家重点实验室,军事科学院防化研究院,北京102205
孙亚昕(1992-),女,博士研究生,主要研究方向为纳米纤维复合材料在环境领域的应用。

收稿日期: 2019-09-06

  修回日期: 2020-10-06

  网络出版日期: 2021-01-27

基金资助

中央高校基本科研业务费专项资金项目(06500100);国民核生化灾害防护国家重点实验室基金资助项目(SKLNBC2018-15)

Research progress on anti-degradation integration of CWAs by electrospun nanofiber

Expand
  • 1. Key Laboratory of Resource-oriented Treatment of Industrial Pollutants,School of Energy and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083;
    2. State Key Laboratory of NBC Protection for Civilian,Research Institute of Chemical Defense,Beijing 102205

Received date: 2019-09-06

  Revised date: 2020-10-06

  Online published: 2021-01-27

摘要

化学战剂(CWAs)作为一类大规模、高杀伤力的化学武器,已多次在战争中被使用。因对人体和环境的危害巨大,使得针对其开展的降解消毒研究,尤其是CWAs的防护、消毒一体化(简称“防消一体化”)日益得到重视。纳米纤维作为一种优秀的基底材料,可以与多种具有可降解CWAs功能的材料相结合,制成具有自降解功能的复合柔性织物。综述了静电纺纳米纤维在CWAs“防消一体化”方面的研究进展,展示了静电纺纳米纤维在CWAs“防消一体化”方面的巨大应用潜力。

本文引用格式

孙亚昕, 张秀玲, 习海玲, 李从举 . 静电纺纳米纤维在化学战剂“防消一体化”中的研究进展[J]. 化工新型材料, 2021 , 49(1) : 47 -51 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.01.011

Abstract

Chemical warfare agents (CWAs) have been used in wars as a large-scale,high-killing chemical weapon.Because of its great harm to the human body and the environment,the research on degradation and disinfection of CWAs has received increasing attention,especially the protection and disintegration integration of CWAs (referred to as anti-disintegration integration).As an excellent base material,nanofiber can be combined with a variety of materials with the function of degradable CWAs to make a composite flexible fabric with self-degrading function.The research progress of electrospun nanofibers in the anti-disintegration of CWAs was summarized,and demonstrated the great potential application of electrospun nanofibers in the anti-disintegration of CWAs.

参考文献

[1] Fitzgerald G J.Chemical warfare and medical response during world war I[J].American Journal of Public Health,2008,98:611-625.
[2] Szinicz L.History of chemical and biological warfare agents[J].Toxicology,2005,214(3):167-181.
[3] Bijani K,Moghadamnia A A.Long-term effects of chemical weapons on respiratory tract in Iraq-Iran war victims living in Babol (North of Iran)[J].Ecotoxicology and Environmental Safety,2002,53(3):422-424.
[4] Chauhan S,Chauhan S,D'cruz R,et al.Chemical warfare agents[J].Environmental Toxicology and Pharmacology,2008,26(2):113-122.
[5] Bhuiyan M A R,Wang L J,Shaid A,et al.Advances and applications of chemical protective clothing system[J].Journal of Industrial Textiles,2019,49(1):97-138.
[6] Zhao S P,Xi H L,Zuo Y J,et al.Rapid activation of basic hydrogen peroxide by borate and efficient destruction of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs)[J].Journal of Hazardous Materials,2019,367:91-98.
[7] Li H,Zhu L,Zhang J Q,et al.High-efficiency separation performance of oil-water emulsions of polyacrylonitrilenanofibrous membrane decorated with metal-organic frameworks[J].Applied Surface Science,2019,476:61-69.
[8] Arribas P,Garcia-Payo M C,Khayet M,et al.Heat-treated optimized polysulfoneelectrospunnanofibrous membranes for high performance wastewater microfiltration[J].Separation and Purification Technology,2019,226:323-336.
[9] Beniwal A,Sunny.Electrospun SnO2/PPy nanocomposite for ultra-low ammonia concentration detection at room temperature[J].Sensors and Actuators B-Chemical,2019,296:126660-126668.
[10] Zhang X L,Fan W,Li H,et al.Extending cycling life of lithium-oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method[J].Journal of Materials Chemistry A,2018,6(43):21458-21467.
[11] Liu Y,Du X,Wang J,et al.High efficient detoxification of mustard gas surrogate based on nanofibrous fabric[J].Journal of Hazardous Materials,2018,347:25-30.
[12] Selvam A K,Nallathambi G.Mesoporous MgAl2O4 and MgTiO3 Nanoparticles Modified PolyacrylonitrileNanofibres for 2-Chloroethyl Ethyl Sulfide Degradation[J].Fibers and Polymers,2015,16(10):2121-2129.
[13] Liu F,Lu Q F,Jiao X L,et al.Fabrication of nylon-6/POMs nanofibrous membranes and the degradation of mustard stimulant research[J].RSC Advances,2014,4(78):41271-41276.
[14] Allen N E,Obendorf S K,Fan J.Polyoxometalate (POM) grafted grooved nanofibrous membranes for improved self-decontamination[J].RSC Advances,2016,6(89):85985-85993.
[15] Liang H X,Yao A N,Jiao X L,et al.Fast and sustained degradation of chemical warfare agent simulants using flexible self-supported metal-organic framework filters[J].ACS Applied Materials & Interfaces,2018,10(24):20396-20403.
[16] Yao A N,Jiao X L,Chen D R,et al.Photothermally enhanced detoxification of chemical warfare agent simulants using bioinspired core-shell dopamine-melanin@metal-organic frameworks and their fabrics[J].ACS Applied Materials & Interfaces,2019,11(8):7927-7935.
[17] Wang H,Wagner G W,Lu A X,et al.Photocatalytic oxidation of sulfur mustard and its simulant on bodipy-incorporated polymer coatings and fabrics[J].ACS Applied Materials & Interfaces,2018,10(22):18771-18777.
[18] Vu A T,Ho K,Lee C H.Removal of gaseous sulfur and phosphorus compounds by carbon-coated porous magnesium oxide composites[J].Chemical Engineering Journal,2016,283:1234-1243.
[19] Ci Y,Wang S,Zhang X L,et al.Chemical warfare agents' degradation on Fe-Cu codoped TiO2 nanoparticles[J].Applied Physics a-Materials Science & Processing,2018,124(11).
[20] Giles S L,Lundin J G,Balow R B,et al.Comparative roles of Zr4+ and Ni2+ Wells-Dawson hetero-metal substituted polyoxometalates on oxidation of chemical contaminants[J].Applied Catalysis A:General,2017,542:306-310.
[21] Kaledin A L,Troya D,Karwacki C J,et al.Key mechanistic details of paraoxon decomposition by polyoxometalates:Critical role of para-nitro substitution[J].Chemical Physics,2019,518:30-37.
[22] Kaledin A L,Driscoll D M,Troya D,et al.Impact of ambient gases on the mechanism of [Cs8Nb6O19]-promoted nerve-agent decomposition[J].Chemical Science,2018,9(8):2147-2158.
[23] Fan W D,Wang X,Zhang X R,et al.Fine-tuning the pore environment of the microporous Cu-MOF for high propylene storage and efficient separation of light hydrocarbons[J].ACS Central Science,2019,5(7):1261-1268.
[24] Dubal D P,Jayaramulu K,Sunil J,et al.Metal-organic framework (MOF) derived electrodes with robust and fast lithium storage for Li-ion hybrid capacitors[J].Advanced Functional Materials,2019,29(19).
[25] Liu Q,Li Y K,Li Q Q,et al.Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures[J].Separation and Purification Technology,2019,214:2-10.
[26] Mate V I A,Dobladez J A D,Alvarez-Torrellas S,et al.Modeling and simulation of the efficient separation of methane/nitrogen mixtures with [Ni3(HCOO)6] MOF by PSA[J].Chemical Engineering Journal,2019,361:1007-1018.
[27] Li WL,Qian J,Zhao T,et al.Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J].Advanced Science,2019,1802362-1802370.
[28] Du M,Song D,Huang A M,et al.Stereoselectively assembled metal-organic framework (MOF) host for catalytic synthesis of carbon hybrids for alkaline-metal-ion batteries[J].Angewandte Chemie International Edition,2019,58(16):5307-5311.
[29] Wang A I,Fan R Q,Zhou X S,et al.Hot-pressing method to prepare imidazole-based Zn(Ⅱ) metal-organic complexes coatings for highly efficient air filtration[J].ACS Applied Materials & Interfaces,2018,10(11):9744-9755.
[30] Jamshidifard S,Koushkbaghi S,Hosseini S,et al.Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(Ⅱ),Cd(Ⅱ) and Cr(Ⅵ) ions from aqueous solutions[J].Journal of Hazardous Materials,2019,368:10-20.
[31] Wu X N,Xiong S S,Gong Y,et al.MOF-SMO hybrids as a H2S sensor with superior sensitivity and selectivity[J].Sensors and Actuators B-Chemical,2019,292:32-39.
[32] Cao Y,Wang L N,Wang C Y,et al.Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4nanosheetphotoelectrochemical sensor[J].Electrochimica Acta,2019,317:341-347.
[33] Chen Y,Li S,Pei X,et al.A Solvent-Free Hot-pressing method for preparing metal-organic-framework coatings[J].Angewandte Chemie International Edition,2016,55(10):3419-3423.
[34] Pedro M N S,Azevedo A M,Aires-Barros M R,et al.Minimizing the influence of fluorescent tags on IgG partition in PEG-salt aqueous two-phase systems for rapid screening applications[J].Biotechnology Journal,2019,14(8).
[35] Zhang P L,Wang Z K,Chen Q Y,et al.Biocompatible G-Quadruplex/BODIPY assembly for cancer cell imaging and the attenuation of mitochondria[J].Bioorganic & Medicinal Chemistry Letters,2019,29(15):1943-1947.
[36] Atilgan A,Islamoglu T,Howarth A J,et al.Detoxification of a sulfur mustard simulant using a BODIPY-functionalized Zirconium-based metal-organic framework[J].ACS Applied Materials & Interfaces,2017,9(29):24555-24560.
Options
文章导航

/