科学研究

核壳结构载药纤维的制备与研究

展开
  • 黑龙江东方学院食品与环境工程学部,哈尔滨150066
赵冬梅(1973-),女,博士后,教授,主要从事纳米功能高分子复合材料的研究,E-mail:110804430@qq.com。

收稿日期: 2019-09-15

  修回日期: 2020-09-14

  网络出版日期: 2021-01-21

基金资助

黑龙江省博士后科研启动金资助项目(LBH-Q16040)

Preparation and study of drug loaded fiber with nuclear-shell structure

Expand
  • Department of Food and Environmental Engineering,East University of Heilongjiang,Harbin 150066

Received date: 2019-09-15

  Revised date: 2020-09-14

  Online published: 2021-01-21

摘要

为了制备具有毒性小、污染少、药效高和残留少等优点的缓释纤维,首先以醋酸纤维素为药物缓释载体,以阿维菌素为释放农药,利用同轴静电纺丝技术制备了具有核壳结构的载药纤维,并对其结构和形貌进行了一系列的表征。阿维菌素的加入破坏了醋酸纤维素的结晶度,但纤维内部仍具有明显的核壳结构。此外,醋酸纤维素与农药阿维菌素之间是物理作用,复合后并不影响药效的发挥。最后,对不同浓度阿维菌素从核壳纤维中的释放行为进行了研究,结果显示了三阶段的释放行为,即延迟释放、均匀释放和缓慢释放,这一释放行为为阿维菌素的有效利用提供了保障。

本文引用格式

赵冬梅, 刘宇, 初小宇, 接伟光 . 核壳结构载药纤维的制备与研究[J]. 化工新型材料, 2020 , 48(12) : 129 -132 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.12.031

Abstract

The purpose was to obtain slow release fibers with the advantages of less toxicity,less pollution,high efficacy and less residue.Firstly,cellulose acetate as drug delivery carrier,avermectin as released pesticide,the drug-loaded fibers with core-shell structure were made through coaxial electrospinning technology,and characterized their structure and morphology.The results showed that the fibers had obvious core-shell structure,although the addition of avermectin damaged the crystallinity of cellulose acetate.Moreover,physical action between cellulose acetate and avermectin did not affect the efficiency of pesticide.Finally,The release behavior of avermectin with different concentrations from core-shell fibers was further investigated.There were three distinct releasing stages in the whole process,namely,delayed-release,uniformly slow-release and rather slow-release,which were beneficial for effectively releasing avermectin.

参考文献

[1] Anton F.Process and apparatus for preparing artificial threads,US 1975504 A[P].1934.
[2] Chen M,Gao S,Wang P,et al.The application of electrospinning used in meniscus tissue engineering[J].Journal of Biomaterials Science Polymer Edition,2018,29(4):461-475.
[3] Agarwal S,Greiner A,Wendorff J H.Functional materials by electrospinning of polymers[J].Progress in Polymer Science,2013,38(6):963-991.
[4] Persano L.Industrial upscaling of electrospinning and applications of polymer nanofibers:a review[J].Macromolecular Materials & Engineering,2013,298(5):504-520.
[5] Sun B,Long Y Z,Zhang H D,et al.Advances in three-dimensional nanofibrous macrostructures via electrospinning[J].Progress in Polymer Science,2014,39(5):862-890.
[6] Liu Q,Zhu J,Zhang L,et al.Recent advances in energy materials by electrospinning[J].Renewable & Sustainable Energy Reviews,2018,81:1825-1858.
[7] Mcclellan P,Landis W J.Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering[J].Bioresearch Open Access,2016,5(1):212-227.
[8] Tao C,Zhang Y,Li B,et al.Hierarchical micro/submicrometer-scale structured scaffolds prepared via coaxial electrospinning for bone regeneration[J].Journal of Materials Chemistry B,2017,5(46):9219-9228.
[9] Lin X,Tang D,Lyu H,et al.Poly(N-isopropylacrylamide)/polyurethane core-sheath nanofibres by coaxial electrospinning for drug controlled release[J].Iet Micro & Nano Letters,2016,11(5):260-263.
[10] Han D,Yu X,Chai Q,et al.Stimuli-responsive self-immolative polymer nanofiber membranes formed by coaxial electrospinning[J].ACS Applied Materials & Interfaces,2017,9(13):11858-11865.
[11] Choi S J,Chattopadhyay S,Kim J J,et al.Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance[J].Nanoscale,2015,8(17):9159-9166.
[12] Senthilkumar N,Kumar G G,Manthiram A.3D hierarchical core-shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells[J].Advanced Energy Materials,2017,8(6):1-11.
[13] Li S,Shen X,Liu J,et al.Synthesis of Ta3N5/Bi2MoO6 core-shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts[J].Environmental Science:Nano,2017,4:1155-1167.
[14] Ekladious I,Liu R,Varongchayakul N.Reinforcement of polymeric nanoassemblies for ultra-high drug loadings,modulation of stiffness and release kinetics,and sustained therapeutic efficacy[J].Nanoscale,2018,10(18):8360-8366.
[15] Khaled S A,Alexander M R,Wildman R D,et al.3D extrusion printing of high drug loading immediate release paracetamol tablets[J].International Journal of Pharmaceutics,2018,538(1-2):223-230.
[16] Mohammadian F,Eatemadi A.Drug loading and delivery using nanofibers scaffolds[J].Artif Cells Nanomed Biotechnol,2017,45(5):881-888.
[17] Zhang K,Li Z,Kang W,et al.Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J].Carbohydrate Polymers,2017,183:62-69.
[18] Ohkawa K.Nanofibers of cellulose and its derivatives fabricated using direct electrospinning[J].Molecules,2015,20(5):9139-9154.
[19] Lee H,Nishino M,Sohn D,et al.Control of the morphology of cellulose acetate nanofibers via electrospinning[J].Cellulose,2018,25(5):2829-2837.
[20] Nair S S,Mathew A P.Porous composite membranes based on cellulose acetate and cellulose nanocrystals via electrospinning and electrospraying[J].Carbohydrate Polymers,2017,175:149-157.
[21] Otsuka I,Njinang C N,Borsali R.Simple fabrication of cellulose nanofibers via electrospinning of dissolving pulp and tunicate[J].Cellulose,2017,24(8):1-8.
[22] Li Z Z,Chen J F,Liu F,et al.Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin[J].Pest Management Science,2007,63(3):241-246.
[23] Wen L X,Li Z Z,Zou H K,et al.Controlled release of avermectin from porous hollow silica nanoparticles[J].Pest Management Science,2005,61(6):583-590.
[24] Li Z Z,Xu S A,Wen L X,et al.Controlled release of avermectin from porous hollow silica nanoparticles:influence of shell thickness on loading efficiency,UV-shielding property and release[J].Journal of Controlled Release,2006,111(1):81-88.
Options
文章导航

/