以海藻酸钠(SA)和氧化石墨烯(GO)为原料,采用超声分散和化学交联法制备了GO/SA凝胶球复合材料。采用傅里叶红外光谱仪和配有能谱仪的扫描电镜对其结构和形貌进行了表征。以锌镍电镀废水中Ni2+为目标污染物,考察了GO与SA配比[m(GO)∶m(SA)]、GO/SA凝胶球投加量对Ni2+吸附的影响,并对其吸附动力学和吸附等温线类型进行了探讨。结果表明:当m(GO)∶m(SA)为1∶9,GO/SA凝胶球投加量为40g/L时,Ni2+的去除率和吸附容量分别为24.119%和100.888mg/g。吸附过程符合准二级动力学模型(R2>0.99),颗粒内扩散方程拟合结果表明GO/SA凝胶球对Ni2+吸附受表面层扩散和颗粒内扩散共同控制。吸附等温线拟合发现Freundlich(R2>0.99)模型能很好地描述Ni2+吸附行为。
Using graphene oxide and sodium alginate as raw material,graphene oxide/sodium alginate(GO/SA) gel ball composites was prepared by using ultrasonic dispersion and chemical crosslinking.The phase composition and microstructure were characterized by FT-IR,SEM equipped with EDS.Ni2+ in zinc-nickel plating wastewater was selected as target pollutant.The effects of the quality ratio of GO and SA and the dosage of GO/SA gel ball on Ni2+ adsorption was investigated.The adsorption kinetics and isotherm type were also studied.The experimental results shown that the removal of Ni2+ was up to 24.119% and the adsorption capacity of Ni2+ was 100.888mg/g respectively when the quality ratio of GO and SA was 1∶9 and the dosage of GO/SA gel ball was 40g/L.The adsorption kinetic could be well simulated by Pseudo-second-order model (R22>0.99).The results from the intra-particle model showed that the adsorption process was controlled by both surface layer diffusion diffusion and intra-particle diffusion.Adsorption isotherms for Ni2+ followed freundlich(R2F>0.99).
[1] Duong H C, Pham T M, Luong S T, et al.A novel application of membrane distillation to facilitate nickel recovery from electroplating wastewater[J].Environ Sci Pollut Res, 2019, 49(6):2306-2318.
[2] Takuma Yasuhiko, Sugimori Hirokazu, Ando Eri.Comparison of the environmental impact of the conventional nickel electroplating and the new nickel electroplating[J].Int J Life Cycle Assess, 2018, 23(8):1609-1623.
[3] 周键, 王三反, 张学敏.离子交换膜电解回收含镍废水中镍的研究[J].工业水处理, 2015, 35(1):22-25.
[4] 宋艳阳, 原思国, 周从章.弱酸离子交换纤维对含镍废水的吸附性能研究[J].功能材料, 2014, 43(15):2014-2018.
[5] 陈前, 陈煌, 徐祺辉.石墨电极电解法处理含镍废水的研究[J].电镀与环保, 2017, 37(6):58-60.
[6] He Dongmei, Cao Zuoying, Zhang Guiqing.Recovery ofnickel fromelectroplating wastewater withanew extractant[J].Chemical Papers, 2019, 73(10):583-589.
[7] 余静, 邱海浪, 卢腾飞.萃取净化电镀含镍废水研究[J].水处理技术, 2014, 40(4):43-47.
[8] 陈振国, 汪晓军.两级沉淀法处理电镀含镍废水[J].电镀与涂饰, 2014, 33(21):935-938.
[9] 崔爱玲, 孙天男, 赵朝成.电吸附法处理模拟含镍废水的研究[J].电镀与环保, 2017, 37(2):60-63.
[10] 尤月, 吴彦晨, 王兴花.氧化石墨烯改性海藻酸钠凝胶球的吸附性能[J].东北林业大学学报, 2017, 45(10):82-88.
[11] 章文军, 赵金风, 侯静菊.GO/ZnO合材料的制备及其光催化性能[J].化学试剂, 2015, 37(8):687-691.
[12] 陆军, 王建朝, 赵美峰.氧化石墨烯的制备及电化学性质研究[J].材料导报B, 2014, 28(11):28-31.
[13] 成岳, 肖治国, 余宏伟.氨基化修饰介孔Fe3O4@SiO2@mSiO2磁性吸附剂的制备及吸附性能的研究[J].功能材料, 2017, 48(12):12135-12142.
[14] 邵宇, 吴称意, 程超.海藻酸钠-g-聚丙烯酰胺/氧化石墨烯复合水凝胶的制备及控释行为[J].高分子材料科学与工程, 2018, 34(4):104-109.
[15] 刘浩怀, 何芝洲, 刘鹏.氧化石墨烯/梭甲基纤维素钠/海藻酸钠复合材料的制备与性能研究[J].化工新型材料, 2017, 45(1):103-105.
[16] 律志民, 杨世民, 陈磊.高性能的MOF/carbon复合材料对水溶液中铀酰的吸附[J].核化学与放射化学, 2019, 41(2):2-10.
[17] 谭雪云, 李冰, 李平.纳米轻基铁改性阳离子树脂制备及去除Cd(Ⅱ)[J].水处理技术, 2019, 45(6):56-61.
[18] 王宝娥, 胡勇有, 谢磊.OMO固定化灭活烟曲霉小球对活性艳蓝KN-R的吸附机理—吸附平衡、动力学和扩散传质过程[J].环境科学学报, 2008, 28(1):89-94.
[19] 许端平, 苗丹, 吴瑶.玉米秸秆生物质炭对铅的吸附动力学特征[J].应用化工, 2017, 46(8):1466-1471.
[20] 玛依拉, 迪丽努尔, 阿布力克木.煤质炭制备条件的优化及对酚类吸附性能与吸附动力学[J].环境工程学报, 2016, 10(3):1281-1288.
[21] 黄正根, 罗秋艳, 胡德玉.β-环糊精修饰磁性氧化石墨烯对酸性红R的吸附[J].精细化工, 2019, 36(6):1036-1041.