新材料与新技术

三维海胆状CH3NH4PbI3/TiO2异质结构材料的制备及其光催化性能研究

展开
  • 凯里学院大健康学院,凯里556011
李荡(1986-),女,硕士,讲师,主要从事纳米材料研究工作,E-mail:lidang2028@qq.com。

网络出版日期: 2020-10-20

基金资助

贵州省教育厅自然科学基金(黔教合KY字[2016]301);贵州省科技厅、黔东南州科技局、凯里学院科技合作协议(黔科合LH字[2016]7314号);凯里学院院级规划课题(Z1064)

Preparation and photocatalytic activity of 3D urchin-like CH3NH4PbI3/TiO2 heterostructure material

Expand
  • School of Life and Health Science,Kaili University,Kaili 556011

Online published: 2020-10-20

摘要

以TiCl4和钛酸丁酯为前驱体,通过水热法制备了三维海胆状TiO2分级结构,并在制备的TiO2上构筑钙钛矿型甲胺碘化铅(CH3NH4PbI3)薄膜形成三维海胆状CH3NH4PbI3/TiO2异质结构材料。利用X射线衍射仪、扫描电子显微镜、紫外-可见吸收光谱对不同温度下制备的材料结构、形貌及光吸收性能进行了表征。以甲醛为目标降解物,研究了可见光照射下CH3NH4PbI3/TiO2的催化性能,并用傅里叶变换红外光谱仪分析了甲醛的降解产物。结果表明:热处理温度为120℃时,成功合成了三维海胆状CH3NH4PbI3/TiO2异质结构材料。在可见光照射下,由于CH3NH4PbI3/TiO2异质结构材料较强的可见光吸收率及CH3NH4PbI3和TiO2之间的协同作用,材料表现出比纯三维海胆状TiO2更好的光催化降解甲醛性能。可见光照射下降解120min后,CH3NH4PbI3/TiO2对甲醛的降解率高达92%,是纯三维海胆状TiO2降解率的3倍左右。基于实验结果,初步分析了CH3NH4PbI3/TiO2异质结构材料光催化降解甲醛的机理,推断了该材料增强甲醛的光催化降解活性机制。

本文引用格式

李荡, 龙杰凤, 吴林冬, 董玮, 梁春华 . 三维海胆状CH3NH4PbI3/TiO2异质结构材料的制备及其光催化性能研究[J]. 化工新型材料, 2020 , 48(10) : 129 -134 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.10.028

Abstract

3D urchin-like TiO2 heterostructure was prepared by hydrothermal method and using TiCl4 and butyl titanate as precursors.The perovskite-type CH3NH4PbI3 heterostructure film was formed on the prepared TiO2 to form 3D urchin-like CH3NH4PbI3/TiO2 heterostructure material.The structure,morphology and light absorption properties of the materials prepared at different temperatures were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM) and UV-Vis absorption spectroscopy.The catalytic properties of CH3NH4PbI3/TiO2 under visible light were studied with formaldehyde as the target degradant.The degradation products of formaldehyde were analyzed by infrared spectroscopy.The results showed that the CH3NH4PbI3/TiO2 was synthesized at a heat treatment temperature of 120℃.Under irradiation,due to the strong visible light absorption of the CH3NH4PbI3/TiO2 and the synergistic effect between CH3NH4PbI3 and TiO2,the materials showed better photocatalytic degradation of formaldehyde than pure 3D TiO2.After 120min,the degradation rate of formaldehyde in CH3NH4PbI3/TiO2 was as high as 92%,which was about three times that of pure urchin-like TiO2.Based on the results,the mechanism of photocatalytic degradation of formaldehyde by CH3NH4PbI3/TiO2 was analyzed.The mechanism for enhancing the photocatalytic degradation activity of formaldehyde was inferred.

参考文献

[1] Ouyang X Z, Xia M, Shen X Y, et al.Pollution characteristics of 15 gas and particle-phase phthalates in indoor and outdoor air in Hangzhou[J].Journal of Environmental Sciences, 2019, 86:107-119.
[2] Ndong B A, Verdin A, Carcon G, et al.Individual exposure level following indoor and outdoor air pollution exposure in Dakar (Senegal)[J].Environmental Pollution, 2019, 248:397-407.
[3] Pan H, Zhou J, He C, et al.Indoor air pollution levels in decorated residences and public places over Xi'an, China[J].Aerosol and Air Quality Research, 2017, 17:2197-2205.
[4] Kim K H, Jahan S A, Lee J T, et al.Exposure to formaldehyde and its potential human health hazards[J].Journal of Environmental Science and Health, Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 2011, 29:277-299.
[5] Chen H Y, Mo J H, Xiao R, et al.Gaseous formaldehyde removal:a laminated plate fabricated with activated carbon, polyimide, and copper foil with adjustable surface temperature and capable of in situ thermal regeneration[J].Indoor Air, 2019, 29(2):469-476.
[6] Ye J, Zhu X, Cheng B, et al.Few-layered graphene-like boron nitride:a highly efficient adsorbent for indoor formaldehyde removal[J].Environmental Science & Technology, 2017, 4:20-25.
[7] Wongniramaikula W, Limsakula W, Choodum A.A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry[J].Food Chemistry, 2018, 249:154-161.
[8] Zhang G, Li Y, Bai J, et al.Practical performance of passive thermal catalysis for indoor formaldehyde[J].Journal of Harbin Institute of Technology, 2019, 2:55-60.
[9] Yao C K, Yuan A L, Zhang H H, et al.Facile surface modification of textiles with photocatalytic carbon nitride nanosheets and the excellent performance for self-cleaning and degradation of gaseous formaldehyde[J].Journal of Colloid and Interface Science, 2019, 533:144-153.
[10] Wang B B, Deng Y Q, He P, et al.Powder quartz/nano-TiO2 composite:mechanochemical preparation and photocatalytic degradation of formaldehyde[J].Journal of Wuhan University of Technology(Materials Science), 2019, 33(6):1381-1386.
[11] Zhou Y, Huang Y, Li D, et al.Three-dimensional sea-urchin-like hierarchical TiO2 microspheres synthesized by a one-pot hydrothermal method and their enhanced photocatalytic activity[J].Materials Research Bulletin, 2013, 48:2420-2425.
[12] Han Yu, Chen Fenghua, Li Ye, et al.Enhanced photocatalytic degradation of norfloxacin under visible light by immobilized and modified In2O3/TiO2 photocatalyst facilely synthesized by a novel polymeric precursor method[J].Journal of Materials Science, 2019, 54(14):10191-10203.
[13] 李大军, 罗馨, 邓雨佳, 等.PPy/TiO2复合微球的制备及其吸附-紫外光催化性能研究[J].化工新型材料, 2019, 47(2):116-121.
[14] 李曙光, 白春华, 张金山.珍珠岩/TiO2光催化复合材料降解罗丹明B的性能究[J].化工新型材料, 2018, 46(10):112-114.
[15] 郑建强, 陈涛, 倪斌, 等.CH3NH4PbI3钙钛矿太阳电池晶粒尺寸及光电性能调控[J].半导体光电, 2018, 39(5):665-670.
[16] Etgar L, Gao P, Xue Z, et al.Mesoscopic CH3NH4PbI3/TiO2 heterojunction solar cells[J].Journal of the American Chemical Society, 2012, 134:17396-17399.
[17] Xing G, Mathews N, Sun S, et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH4PbI3[J].Science, 2013, 342(6156):344-347.
[18] Liu D, Kelly T L.Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J].Nature Photonics, 2014, 8(2):133-138.
[19] 李荡, 李远勋, 张杨, 等.N、Pt共掺杂三维海胆型TiO2制备及光电性能研究[J].云南大学学报:自然科学版, 2019, 41(3):537-544.
[20] Feng K J, Liu Y T, Zhang Y C, et al.Preparation of CH3NH4PbI3 thin films for solar cells via Vapor Transfer[J].Journal of Energy Chemistry, 2018, 27(5):1386-1389.
[21] Vidyasagar C C, Flores B M M, Perez V M J.Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics[J].Nano-Micro Letters, 2018, 10(4):1-34.
[22] Huang W, Liu Y, Yue S Z, et al.Optical bandgap energy of CH3NH4PbI3 perovskite studied by photoconductivity and reflectance spectroscopy[J].Science China Technological Sciences, 2018, 61(6):886-892.
[23] Stranks S D, Eperon G E, Grancini G, et al.Eleectron-hole diffusion lengths exceeding 1 micrometer in an organnmetal trihalide perovskite absorber[J].Science, 2013, 342(6156):341-344.
Options
文章导航

/