氮掺杂石墨烯有优良的电化学性能,可用于制作超级电容器、锂离子电池、燃料电池等储能器件,但氮掺杂石墨烯的制备方法大都成本较高、工艺条件比较苛刻。以鳞片石墨和尿素为原料,采用球磨法制备了氮掺杂石墨烯纳米片,使用扫描电镜、X射线衍射和X光电子能谱仪对氮掺杂石墨烯纳米片的形貌、结构和氮掺杂形式进行了表征,并对氮掺杂石墨烯纳米片的电化学性能进行了测试。结果表明:得到的氮掺杂石墨烯纳米片尺寸位于1~10μm之间,氮掺杂形式以吡啶N和石墨N为主,在1A/g电流密度下,其质量比电容为201F/g。
N-doped graphene has excellent electrochemical properties and can be used to make super capacitors,lithium-ion batteries,fuel cells and other energy storage devices.However,most of the preparation methods of N-doped graphene have high cost and harsh process conditions.N-doped graphene nanosheets were prepared by ball milling with graphite and urea as raw materials.The morphology,structure and nitrogen forms of N-doped graphene nanosheets were characterized by SEM,XRD and XPS,and the electrochemical properties were tested.The results shown that the size of the graphene nanoflakes was between 1μm and 10μm,and the doped nitrogen was mainly composed of pyridine N and graphite N.The specific capacitance was 201F/g at 1A/g.
[1] Kamran U, Heo Y J, Lee J W, et al.Functionalized carbon materials for electronic devices:a review[J].Micromachines, 2019, 10(4):234-260.
[2] Novoselov K S, Geim A K, Morozov S, et al.Electric field effect in atomically thin carbon films[J].Science, 2004, 306(5696):666-669.
[3] Lee C, Wei X, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science, 2008, 321(5887):385-388.
[4] 赵宇航, 周根树, 王利斌, 等.石墨烯增强增韧氧化锆陶瓷的机制[J].材料热处理学报, 2019, 40(9):8-13.
[5] Dai W, Ma T F, Yan Q W, et al.Metal-Level thermally conductive yet soft graphene thermal interface materials[J].ACS Nano, 2019, 13(10):11561-11571.
[6] Liu M, Yin X B, Zhang X.Double-layer graphene optical modulator[J].Nano Lett, 2012, 12(3):1482-1485.
[7] Chen J J, Wu H C, Yu D P, et al.Magnetic moments in graphene with vacancies[J].Nanoscale, 2014, 6(15):8814-8821.
[8] 谭腾, 袁中野, 陈远富, 等.基于石墨烯的光纤功能化传感器件和激光器件[J].激光与光电子学进展, 2019, 56(17):196-217.
[9] Ke Q Q, Wang J.Graphene-based materials for supercapacitor electrodes-a review[J].J Materiomics, 2016, 2(1):37-54.
[10] Wang C, Luo F, Lu H, et al.Side-by-side observation of the interfacial improvement of vertical graphene-coated silicon nanocone anodes for lithium-ion batteries by patterning technology[J].Nanoscale, 2017, 9(44):17241-17247.
[11] 辛王鹏, 李艳敬, 周国伟.石墨烯/TiO2基三元复合材料的制备及应用研究进展[J].化工新型材料, 2019, 47(6):1-6.
[12] Zhang X H, Chen X, Chen C G, et al.Ruthenium oxide modified hierarchically porous boron-doped graphene aerogels as oxygen electrodes for lithium-oxygen batteries[J].RSC Advances, 2018, 8(70):39829-39836.
[13] Wang X W, Sun G Z, Routh P, et al.Heteroatom-doped graphene materials:syntheses, properties and applications[J].Chem Soc Rev, 2014, 43(20):7067-7098.
[14] 任福成, 徐守冬, 张鼎, 等.B、N共掺杂单层石墨烯电子结构和导电性能[J].太原理工大学学报, 2018, 49(4):525-532.
[15] Usachov D, Vilkov O, Gruneis A, et al.Nitrogen-doped graphene:efficient growth, structure, and electronic properties[J].Nano Lett, 2011, 11(12):5401-5407.
[16] Guo W X, Chen M Q, Zhang Y, et al.Generation three-dimensional nitrogen-doped graphene frameworks as advanced electrode for supercapacitors[J].J Mater Research, 2017, 33(9):1-11.
[17] Wei D C, Liu Y Q, Wang Y, et al.Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J].Nano Lett, 2009, 9(5):1752-1758.
[18] Deng D H, Pan X L, Yu L, et al.Toward N-doped graphene via solvothermal synthesis[J].Chem Mater, 2011, 23(5):1188-1193.
[19] Lee K H, Oh J, Son J G, et al.Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation[J].ACS Appl Mater & Interfaces, 2014, 6(9):6361-6368.
[20] Jeong H M, Lee J W, Shin W H, et al.Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J].Nano Lett, 2011, 11(6):2472-2477.
[21] Xue Y H, Chen H, Qu J, et al.Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage[J].2D Mater, 2015, 2(4):044001-044007.