三维孔状石墨烯气凝胶是一种理想的超级电容器电极材料。以氧化石墨烯为碳源,SiO2为硅源,使用一步水热法合成了高孔隙率的硅掺杂石墨烯气凝胶(Si-GA)。通过扫描电子显微镜、X射线衍射仪和傅里叶变换红外光谱等多种表征方法,完整地揭示了Si-GA的形貌、晶体结构和化学组分。采用热重分析仪对样品进行热稳定性测试。结果表明,Si-GA在浓度1mol/L的KOH电解液中表现出超高的比电容(348.5F/g,1A/g)和优异的循环稳定性,这也说明Si-GA作为高性能超级电容器电极在能源领域具有广阔的应用前景。
3D porous graphene aerogels have become an ideal supercapacitor electrode material.Therefore,a stable and high-performance silicon-doped graphene aerogel (Si-GA) was prepared by simple one-step hydrothermal synthesis,in which graphene oxide (GO) and silicon dioxide(SiO2) were adopted as carbon source and silicon source.The morphology,crystal structure and chemical composition of Si-GA were characterized by scanning electron microscope (SEM),X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR),and the thermal decomposition of the sample was performed by thermal gravimetric analyzer (TGA).The experiment demonstrated that the as-made Si-GA revealed excellent capacitive behavior (348.5F/g at 1A/g) and long-term cycling stability in 1.0mol/L KOH electrolyte,which indicated the good potential of Si-GA as supercapacitors electrode for high-performance energy storage devices.
[1] Pierre A C, Pajonk G M.Chemistry of aerogels and their applications[J].Chemical Reviews, 2002, 102(11):4243-4266.
[2] Pekala R W.Organic aerogels from the polycondensation of resorcinol with formaldehyde[J].Journal of Materials Science, 1989, 24(9):3221-3227.
[3] Sun H, Xu Z, Gao C.Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J].Advanced Materials, 2013, 25(18):2554-2560.
[4] Saliger R, Fischer U, Herta C, et al.High surface area carbon aerogels for supercapacitors[J].Journal of Non-Crystalline Solids, 1998, 225:81-85.
[5] Geim A K.Graphene:status and prospects[J].Science, 2009, 324(5934):1530-1534.
[6] Choi W, Lahiri I, Seelaboyina R, et al.Synthesis of graphene and its applications:a review[J].Critical Reviews in Solid State and Materials Sciences, 2010, 35(1):52-71.
[7] Liu K, Chen Y M, Policastro G M, et al.Three-dimensional bicontinuous graphene monolith from polymer templates[J].ACS Nano, 2015, 9(6):6041-6049.
[8] Li C, Jiang D, Liang H, et al.Superelastic and arbitrary-shaped graphene aerogels with sacrificial skeleton of melamine foam for varied applications[J].Advanced Functional Materials, 2018, 28(8):1704674.
[9] Chen Z, Ren W, Gao L, et al.Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J].Nature Materials, 2011, 10(6):424.
[10] Worsley M A, Pauzauskie P J, Olson T Y, et al.Synthesis of graphene aerogel with high electrical conductivity[J].Journal of the American Chemical Society, 2010, 132(40):14067-14069.
[11] Zhang Q, Zhang F, Medarametla S P, et al.3D printing of graphene aerogels[J].Small, 2016, 12(13):1702-1708.
[12] Nguyen S T, Nguyen H T, Rinaldi A, et al.Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 414:352-358.
[13] Dong L, Chen Z, Zhao X, et al.A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water[J].Nature Communications, 2018, 9(1):76.
[14] Wu Z S, Yang S, Sun Y, et al.3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J].Journal of the American Chemical Society, 2012, 134(22):9082-9085.
[15] Wu Z S, Winter A, Chen L, et al.Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J].Advanced Materials, 2012, 24(37):5130-5135.
[16] Murugan A V, Muraliganth T, Manthiram A.Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage[J].Chemistry of Materials, 2009, 21(21):5004-5006.
[17] Yeh P, Yariv A, Marom E.Theory of bragg fiber[J].JOSA, 1978, 68(9):1196-1201.
[18] 张亚婷, 李景凯, 周安宁, 等.Fe2O3/煤基石墨烯纳米复合材料制备及其电化学性能研究[J].化工新型材料, 2015, 43(6):104-107.