综述与专论

有机-无机杂化介孔材料的结构调控研究进展

展开
  • 菏泽学院化学化工学院,菏泽274015
孟祥艳(1984-),女,硕士,实验师,研究方向为多孔纳米材料的合成及应用。

网络出版日期: 2020-10-20

基金资助

山东省自然科学基金(ZR2018BB040);菏泽学院博士基金(XY16BS42)

Research progress on PMOs mesostructural control

Expand
  • Department of Chemistry & Chemical Engineering,Heze University,Heze 274015

Online published: 2020-10-20

摘要

作为一种新兴的介孔材料,有机-无机杂化介孔材料(PMOs)兼具了无机介孔材料与有机材料的双重性质,在吸附分离、催化、生物医学等领域具有广阔的应用前景。结构与形貌的设计控制研究对PMOs材料的功能性应用具有重要的意义。对PMOs问世以来孔道结构调控的研究进展加以评述,分别从表面活性剂、反应条件、硅源、添加剂、无机盐等不同的角度对PMOs介孔结构的调控方法进行了归纳,讨论了其结构调控的机理,并展望了其未来发展前景。

本文引用格式

孟祥艳, 林枫 . 有机-无机杂化介孔材料的结构调控研究进展[J]. 化工新型材料, 2020 , 48(10) : 35 -39 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.10.008

Abstract

As an emerging mesoporous materials,periodic mesoporous organosilicas (PMOs),which contain organic groups as an integral part of the inorganic-oxide framework,exhibit great potential in the field of adsorption,catalysis and biomedicine,etc.The structural and morphological control of PMOs are of crucial importance in determining its properties and functions.The recent progresses in the mesostructural control of PMOs as well as the mechanism were summarized.The control methods of PMOs mesoporous structure were summarized,from the perspectives of surfactant,synthesis conditions,silica sources,additives and inorganic salts,respectively.The future development of the PMOs was also prospected.

参考文献

[1] Inagaki S, Guan S, Fukushima Y, et al.Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks[J].J Am Chem Soc, 1999, 121(41):9611-9614.
[2] Fiorilli S, Camarota B, Garrone E, et al.Carboxylic groups in mesoporous silica and ethane-bridged organosilica:effect of the surface on the reactivity[J].Phys Chem Chem Phys, 2011, 13(3):1201-1209.
[3] Esquivel D, Ouwehand J, Meledina M, et al.Thiol-ethylene bridged PMO:a high capacity regenerable mercury adsorbentvia intrapore mercury thiolate crystal formation[J].J Hazard Mater, 2017, 339:368-377.
[4] Yu L, Chen Y, Lin H, et al.Ultrasmall mesoporous organosilica nanoparticles:morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery[J].Biomaterials, 2018, 161:292-305.
[5] Hunks W J, Ozin G A.Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs)[J].J Mater Chem, 2005, 15(35):3716-3724.
[6] He W T, Yang Y J, Li J, et al.Role of the structure-directing agent on the mesopore formation and morphology evolution of silica nanoparticles[J].Colloids Surfaces A, 2016, 509:583-590.
[7] Hamoudi S, Yang Y, Moudrakovski I L, et al.Synthesis of porous organosilicates in the presence of alkytrimethylammonium chlorides:effect of the alkyl chain length[J].J Phys Chem B, 2001, 105(38):9118-9123.
[8] Xia Y D, Mokaya R.Surfactant mediated control of pore size and morphology for molecularly ordered ethylene-bridged periodic mesoporous organosilica[J].J Phys Chem B, 2006, 110(9):3889-3894.
[9] Lin F, Meng X Y, Kukueva E, et al.New insights into the mesophase transformation of ethane-bridged PMOs by the influence of different counterions under basic conditions[J].RSC Adv, 2015, 5(8):5553-5562.
[10] Han Y, Ying J Y.Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures[J].Angew Chem Int Edit, 2005, 44(2):288-292.
[11] Djojoputro H, Zhou X F, Qiao S Z, et al.Periodic mesoporous organosilica hollow spheres with tunable wall thickness[J].J Am Chem Soc, 2006, 128(19):6320-6321.
[12] Nguyen T P, Hesemann P, Linh Tran T M, et al.Nanostructured polysilsesquioxanes bearing amine and ammonium groups by micelle templating using anionic surfactants[J].J Mater Chem, 2010, 20(19), 3910-3917.
[13] Liang Y C, Hanzlik M, Anwander R.Ethylene-bridged periodic mesoporous organosilicas with Fm3m symmetry[J].J Mater Chem, 2005, 15(35/36):3919-3928.
[14] Liang Y C, Erichsen E S, Hanzlik M, et al.Facile mesophase control of periodic mesoporous organosilicas under basic conditions[J].Chem Mater, 2008, 20(4):1451-1458.
[15] Hamoudi S, Kaliaguine S.Periodic mesoporous organosilica from micellar oligomer template solution[J].Chem Commun, 2002(18):2118-2119.
[16] Guo W P, Kim I, Ha C S.Highly ordered three-dimensional large-pore periodic mesoporous organosilica with Im3m symmetry[J].Chem Commun, 2003(21):2692-2693.
[17] Manchanda A S, Kruk M.Synthesis of large-pore face-centered-cubic periodic mesoporous organosilicas with unsaturated bridging groups[J].Micropor Mesopor Mat, 2016, 222:153-159.
[18] Cho E B, Kim D, Mandal M, et al.Benzene-silica with hexagonal and cubic ordered mesostructures synthesized in the presence of block copolymers and weak acid catalysts[J].J Phys Chem C, 2012, 116(30):16023-16029.
[19] Kapoor M P, Inagaki S.Synthesis of cubic hybrid organic-inorganic mesostructures with dodecahedral morphology from a binary surfactant mixture[J].Chem Mater, 2002, 14(8):3509-3514.
[20] Lin D R, Hu L J, Tolbert S H, et al.Controlling nanostructure in periodic mesoporous hexylene-bridged polysilsesquioxanes[J].J Non-Cryst Solid, 2015, 419:6-11.
[21] Jiang D D, Wei Q, Cui S P, et al.Controllable morphology and pore structure of micron-sized organic-inorganic hybrid silica spheres derived from silsesquioxane[J].J Sol-Gel Sci Technol, 2016, 78(1):40-49.
[22] Xia L Y, Hu Y C, Wu Y Q, et al.Manipulation of the phase structure of vinyl-functionalized phenylene bridging periodic mesoporous organosilica[J].J Sol-Gel Sci Techn, 2012, 64(3):718-727.
[23] Guo W, Kleitz F, Cho K, et al.Large pore phenylene-bridged mesoporous organosilica with bicontinuous cubic Ia3d (KIT-6) mesostructure[J].J Mater Chem, 2010, 20(38):8257-8265.
[24] Na W, Wei Q, Zou Z C, et al.Mesoporous organosilicas with ultra-large pores:mesophase transformation and bioadsorption properties[J].J Colloid Interf Sci, 2010, 346(1):61-65.
[25] Redzheb M A, Bernstorff S, Sartori B, et al.Periodic mesoporous organosilica films with a tunable steady-state mesophase[J].Chem Phys Chem, 2017, 18(20):2846-2849.
[26] Guan B Y, Cui Y, Ren Z Y, et al.Highly ordered periodic mesoporous organosilica nanoparticles with controllable pore structures[J].Nanoscale, 2012, 4(20):6588-6596.
[27] Zhao L, Zhu G S, Zhang D L, et al.Synthesis and structural identification of a highly ordered mesoporous organosilica with large cagelike pores[J].J Phys Chem B, 2005, 109(2):764-768.
[28] Zhu G R, Yang Q H, Zhong H, et al.Phase transformation of the periodic mesoporous organosilicas assisted by organotrialkoxysilane[J].J Phys Chem B, 2007, 111(28):8027-8033.
[29] Xia L Y, Hu Y C, Rong M Z, et al.Preparation of bifunctionalized phenylene-bridged periodic mesoporous organosilica for solid-phase microextraction[J].RSC Adv, 2014, 4(1):168-174.
[30] Zhao D Y, Wan Y, Zhou W Z.Ordered mesoporous materials[M].Berlin:Wiley-VCH, 2013:76-82.
[31] Cao Z K, Du P, Duan A, et al.Synthesis of mesoporous materials SBA-16 with different morphologies and their application in dibenzothiophene hydrodesulfurization[J].Chem Eng Sci, 2016, 155:141-152.
[32] Liang Y C, Hanzlik M, Anwander R.Periodic mesoporous organosilicas:mesophase control via binary surfactant mixtures[J].J Mater Chem, 2006, 16(13):1238-1253.
[33] Zhang L, Yang Q H, Zhang W H, et al.Highly ordered periodic mesoporous ethanesilica synthesized under neutral conditions[J].J Mater Chem, 2005, 15(26):2562-2568.
[34] Lin F, Meng X Y, Wang B, et al.Structure rearrangement of periodic mesoporous organosilicas through a post-synthesis approach[J].Mater Lett, 2019, 245:73-76.
[35] Lin F, Meng X Y, Lu S J, et al.One-pot synthesis and structure evolution of copper-containing ethane-silica induced by copper sources[J].Chemistry Select, 2019, 4:737-741.
[36] Liu F, Yuan P, Wan J J, et al.Periodic mesoporous organosilicas with controlled pore symmetries for peptides enrichment[J].J Nanosci Nanotechno, 2011, 11(6):5215-5222.
[37] Liu T T, Tian H, Liu J, et al.Inorganic-salts assisted self-assembly of pluronic F127-organosilica into ordered mesostructures[J].J Nanosci Nanotechnol, 2016, 16:9173-9179.
[38] Manchanda A S, Kruk M.Synthesis of large-pore face-centered-cubic periodic mesoporous organosilicas with unsaturated bridging groups[J].Micropor Mesopor Mat, 2016, 222:153-159.
Options
文章导航

/