为了研究柠檬渣微波改性后对Cu2+的吸附性能。利用紫外光谱(UV)、红外光谱(FT-IR)、差热分析(TG-DTA)和能谱(EDS)对柠檬渣进行表征,并进行回归分析。结果表明:用微波改性后的柠檬渣对Cu2+的吸附率是预处理后柠檬渣的14.5倍左右,是化学改性后柠檬渣的1.23倍左右;微波产生的内酯基和酸性基团羧基,对Cu2+的吸附更有利;吸附Cu2+的柠檬渣较微波后的柠檬渣的最大吸收UV波长发生了蓝移,且振动范围变宽了;吸附Cu2+后的柠檬渣的TG线有3个失重过程;Cu2+能被改性柠檬渣有效吸附。相同拟合条件下,柠檬渣吸附Cu2+后的UV、FT-IR和DTA的出峰位置与峰强的拟合程度变差。
In order to study the adsorption properties of Cu2+ by microwave modified lemon residues,the samples were characterized by UV,FT-IR,TG-DTA,EDS,and regression analysis was used too.The result shown that the adsorption rate of Cu2+ by the lemon residues was 14.5 times than by the pretreatment,and 1.23 times by chemical modified lemon residues.The lactone groups and the carboxyl groups of the acidic groups produced by the microwave were more favorable for the adsorption of Cu2+.The maximum absorption UV wavelength of the lemon residues after Cu2+ adsorption was increased than the microwave modified lemon residues,and the vibration range became wider.There were three weight loss processes to the TG line of the lemon residue after Cu2+ adsorption.Cu2+ could be effectively adsorbed by the modified lemon residue.The degree of fitting of the peak position and the peak intensity that the UV,FT-IR and DTA of lemon residues after Cu2+ adsorption was worse.
[1] Yuan J H,Xu R K,Zhang H.The forms of alkalis in the biochar produced from crop residues at different temperatures[J].Bioresource Technology,201l,102(3):3488-3497.
[2] Koizumi N,Sato K,Ishimaru S.Cu2+ and Zn2+ ion adsorption onto a fluorohectorite clay-poly(N-isopropylacrylamide) nanocomposite hydrogel[J].Chemistry Letters,2014,43(6):769-771.
[3] Elbariji S,Petrissans A,Elamine M,et al.Removal of Cu2+ from aqueous solutions by adsorption on chemically modified cellulosic supports[J].Particulate Science and Technology,2009,29(4):320-332.
[4] Hsu T C,Yua C C,Yeha C M.Adsorption of Cu2+ from water using raw and modified coal fly ashes[J].Fuel,2008,87(7):1355-1359.
[5] Yu J,Tong M,Sun X,et al.Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker's yeast[J].Bioresource Technology,2008,99(7):2588-2593.
[6] 佟雪娇.生物质炭对水体/红壤中Cu(Ⅱ)的去除和固定作用[D].南京:南京农业大学,2011.
[7] Uchimiya M,Wartelle L H,Klasson K,et a1.Influence of pyrolysis temperature on biocharproperty and function as a heavy metal sorbent in soil[J].Journal of Agricultural and Food Chemistry,2011,59(6):2501-2510.
[8] 谢志刚.橘皮渣水处理剂的制备及其应用研究[D].重庆:重庆大学,2006.
[9] Adam J J,David A,Chen E F,et al.Lemon peel and limoncello liqueur:a proteomic due[J].BBA Proteins Proteom,2013(1834):1484-1491.
[10] 沈王庆,雷阳.H3PO4改性柠檬渣的吸附性能与表征研究[J].江苏农业科学,2016,44(3):376-380.
[11] 沈王庆,雷阳,邵培利.H3BO3改性柠檬渣对Cu2+、Pb2+、Cr6+的吸附性能[J].环境科学研究,2017,30(1):152-158.
[12] 沈王庆,李小雪,黄佳.改性柠檬渣的结构特征及其对Cu2+的吸附性能[J].环境科学研究,2016,29(1):146-154.
[13] 祝春水,魏涛,陈文宾,等.花生壳吸附Cu2+的动力学和热力学研究[J].环境污染与防治,2008,30(8):14-18.
[14] 沈王庆,雷阳.NaOH/KOH改性柠檬渣吸附Pb2+的动力学和热力学研究[J].林产化学与工业,2017,37(3):141-146.
[15] 陈月铃,沈王庆,朱俊.柠檬渣微波改性及吸附Pb2+的性能研究[J].天然产物研究与开发,2017,29:826-830,872.