科学研究

碳纤维与磷脂分子聚集行为相关性研究

展开
  • 1.北京化工大学有机无机复合材料国家重点实验室,北京 100029;
    2.北京化工大学碳纤维及功能高分子教育部重点实验室,北京 100029
吴怡凡(1995-),男,硕士研究生,研究方向为高模量碳纤维及其复合材料。

网络出版日期: 2020-12-07

Correlation between carbon fiber and phospholipid molecular aggregation behavior

Expand
  • 1.State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology,Beijing 100029;
    2.Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education,Beijing University of Chemical Technology,Beijing 100029

Online published: 2020-12-07

摘要

采用碳纤维作为基底材料,并利用光学显微镜进行观察,研究了磷脂分子在蒸馏水和无水乙醇体系中的聚集行为。实验结果表明,碳纤维在磷脂分子聚集过程中不可缺少,是磷脂分子聚集的必要条件。选用水和乙醇的混合溶液作为观察溶液时,其比例会影响磷脂分子的聚集。使用纯乙醇制备磷脂膜,并配合纯净蒸馏水进行观察,可以清楚地观察到磷脂分子聚集行为主要有3种:一是磷脂双分子层脱落聚集成聚集体;二是磷脂分子直接聚集形成聚集体;三是“前驱体”诱导聚集为聚集体。因而磷脂分子的聚集方式不惟一。

本文引用格式

吴怡凡, 张学军, 田艳红 . 碳纤维与磷脂分子聚集行为相关性研究[J]. 化工新型材料, 2020 , 48(11) : 163 -166 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.11.036

Abstract

Carbon fiber was used as the substrate material and observed by optical microscopy.The aggregation behavior of phospholipid molecules in distilled water and anhydrous ethanol system was studied.The experimental results shown that carbon fiber was indispensable in the process of phospholipid molecular aggregation,and was a sufficient condition for the aggregation of phospholipid molecules.When the mixed solution of water and ethanol was used as the observation solution,the ratio of there affected the aggregation of phospholipid molecules.The preparation of phospholipid membranes with pure ethanol and observation with pure distilled water can clearly observe that there were three main types of phospholipid molecular aggregation behaviors:one was the separation of phospholipid bilayers into aggregates,and the other was that phospholipid molecules directly aggregated to form aggregates.It was the three ways in which the “precursor” induced aggregation into aggregates,and thus the manner of aggregation of phospholipid molecules was not unique.

参考文献

[1] 中国化学会.中国化学会第十六届胶体与界面化学会议论文摘要集[C].青岛:[出版者不详],2017.
[2] 李轶.囊泡相中富勒烯的电化学行为[D].济南:山东大学,2007.
[3] Li M,Chen M,Sheepwash E,et al.AFM studies of solid-supported lipid bilayers formed at a Au(111) electrode surface using vesicle fusion and a combination of langmuir-blodgett and langmuir?schaefer techniques[J].Langmuir the ACS Journal of Surfaces & Colloids,2008,24(18):10313.
[4] And I R,Brisson A.Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy[J].Langmuir,2000,16(4):1806-1815.
[5] Okumura Y,Urita K.Rapid electroformation of giant vesicles[J].Chemistry Letters,2011,40(5):530-532.
[6] Zhu D,Chen H,Zheng J,et al.Preparation and permeation studies of soybean lecithin-based vesicles[J].Acta Academiae Medicinae Sinicae,2006,28(4):492-496.
[7] Li Z,Zhou W,Wu Z,et al.Fabrication of size-controllable ultrasmall-disk electrode:monitoring single vesicle release kinetics at tiny structures with high spatio-ternporal resolution[J].Biosensors & Bioelectronics,2009,24(5):1358-1364.
[8] Przybylo M,Sykora J,Humpolíckova J,et al.Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions[J].Langmuir the ACS Journal of Surfaces & Colloids,2006,22(22):9096-9099.
[9] Hill R J,Wang C-Y.Diffusion in phospholipid bilayer membranes:dual-leaflet dynamics and the roles of tracer-leaflet and inter-leaflet coupling[J].2014,470(2167):20130843-20130843.
[10] Talmon Y,Evans D F,Ninham B W.Spontaneous vesicles formed from hydroxide surfactants:evidence from electron microscopy[J].Science,1983,221(4615):1047-1048.
[11] Kaler E W,Murthy A K,Rodriguez B E.Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants[J].Science,1989,245(4924):1371-1374.
[12] Li Y,Jing J,Zhang X,et al.Great application prospect in vivo:efficient electroformation of giant vesicles on novel carbon fiber microelectrode[J].Electrochemistry Communications,2012,25(1):151-154.
[13] 王新城.巨型正反相蛋黄卵磷脂囊泡的制备与表征[D].天津:天津大学理学院,2015.
[14] Le Berre M L,Yamada A,Reck L,et al.Electroformation of giant phospholipid vesicles on a silicon substrate:advantages of controllable surface properties[J].Langmuir the ACS Journal of Surfaces & Colloids,2008,24(6):2643-2649.
[15] Johnsen K B,Gudbergsson J M,Duroux M,et al.On the use of liposome controls in studies investigating the clinical potential of extracellular vesicle-based drug delivery systems-a commentary[J].Journal of Controlled Release,2018,269:10-14.
[16] Wang S,Gao J,Wang Z.Outer membrane vesicles for vaccination and targeted drug delivery[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2018,11(l2):1523-1538.
[17] Adams D J,Adams S,Atkins D,et al.Impact of mechanism of formation on encapsulation in block copolymer vesicles[J].Journal of Controlled Release,2008,128(2):165-170.
[18] Angelova M I,Dimitrov D S.Liposome electroformation[M].United Kingdom:John Wiley & Sons Ltd,1986,303-311.
[19] Adams D J,Kitchen C,Adams S,et al.On the mechanism of formation of vesicles from poly(ethylene oxide)-block-poly(caprolactone) copolymers[J].Soft Matter,2009,5(16):3086.
[20] Parkar N S,Akpa B S,Nitsche L C,et al.Vesicle formation and endocytosis:function,machinery,mechanisms,and modeling[J].Antioxid Redox Signal,2009,11(6):1301-1312.
[21] Kurniawan J,Ventrici De Souza J F,Dang A T,et al.Preparation and characterization of solid supported lipid bilayers formed by langmuir-blodgett deposition-a tutorial[J].Langmuir,2018.
Options
文章导航

/