以醋酸锂、醋酸锰和醋酸铬为原料,采用熔盐燃烧法在300℃、400℃、500℃、600℃一次燃烧反应1h和650℃二次焙烧6h制备LiCr0.05Mn1.95O4正极材料。通过X射线衍射仪和扫描电子显微镜对样品的物相组成、结晶性和形貌进行表征,并用恒电流充放电测试、循环伏安和电化学交流阻抗进行电化学性能测试表征。结果表明:所有样品均具有LiMn2O4的尖晶石结构,没有任何杂质相,颗粒尺寸分布为110~250nm。燃烧温度为500℃合成的 LiCr0.05Mn1.95O4正极材料具有较好的电化学性能,在1C、5C和10C倍率,循环100次后,其容量保持率分别为90.29%、91.58%、90.26%。
LiCr0.05Mn1.95O4 cathode materials were prepared via a molten-salt combustion method at the first combustion reaction of 300℃,400℃,500℃ and 600℃ for 1h combined with the second calcination of 650℃ for 6h using lithium acetate,manganese acetate and chromium acetate as raw materials.The phase composition,crystallinity and morphology of the as-prepared samples were characterized by XRD and SEM,whilst the electrochemical performance were tested by galvanostatic charge and discharge measurement,cyclic voltammetry and electrochemical alternating current impedance.The results shown that all the samples had the spinel structure of LiMn2O4,without any impurity phase,the particle size distribution was 110~250nm.The LiCr0.05Mn1.95O4 synthesized at 500℃ delivered good electrochemical performance,the capacity retention were 90.29%,91.58%,and 90.26% after 100 cycles at 1C,5C and 10C,respectively.
[1] Scrosati B,Hassoun J,Sun Y K.Lithium-ion batteries.a look into the future[J].Energy & Environmental Science,2011,4(9):3287-3295.
[2] Zhou H.New energy storage devices for post lithium-ion batteries[J].Energy & Environmental Science,2013,6(8):2256-2256.
[3] Albertus P,Babinec S,Litzelman S,et al.Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J].Nature Energy,2018,3(1):16.
[4] 赵安婷,张朝平.LiCrxNi3xMn1.8O4(x=0.05)的电化学性能[J].电源技术,2007,31(10):794-795.
[5] Thackeray M M,David W I F,Bruce P G,et al.Lithium insertion into manganese spinels[J].Materials Research Bulletin,1983,18(4):461-472.
[6] 马璨,吕迎春,李泓,等.锂离子电池基础科学问题(VII)正极材料[J].储能科学与技术,2014,3(1):53-65.
[7] Ming H,Yan Y,Ming J,et al.Gradient V2O5 surface-coated LiMn2O4 cathode towards enhanced performance in Li-ion battery applications[J].Electrochimica Acta,2014,120:390-397.
[8] 丁玲.锂离子动力电池正极材料发展综述[J].电源技术,2015,39(8):1780-1800.
[9] Chen H,Ma T,Zeng Y,et al.Mechanism of capacity fading caused by Mn(Ⅱ) deposition on anodes for spinel lithium manganese oxide cell[J].Journal of Wuhan University of Technology-Mater Sci Ed,2017,32(1):1-10.
[10] Wakihara M.Recent developments in lithium batteries[J].Material Sci Eng R,2001,33(4):109-134.
[11] Prabua M,Reddya M V,Chowdaria B V R.(Li,Al)-co-doped spinel,Li(Li0.1Al0.1Mn1.8)O4 as high performance cath-ode for lithium ion batteries[J].Electrochimica Acta,2013,88:745-755.
[12] Chung K Y,Kim K B.Investigations into capacity fading as a result of a Jahn-Teller distortion in 4V LiMn2O4 thin film electrodes[J].Electrochimica Acta,2004,49(20):3327-3337.
[13] Ariyoshi K,Iwata E,Kuniyoshi M,et al.Lithium aluminum manganese oxide having spinel-framework structure for long-life lithium-ion batteries[J].Electrochemical and Solid-State Letters,2006,9(12):A557-A560.
[14] Lu Y,Luo X Y,Bai H L,et al.Investigating the enhanced kinetics of LiNi0.08Mn1.92O4 cathode material by regulating calcination temperature for long life lithium-ion battery[J].Vacuum,2018,158:223-230.
[15] Jiang J,Li W,Deng H,et al.Research on improving the electrochemical performance of LiMn2O4 via Cr-doping[J].Journal of Nanoscience and Nanotechnology,2019,19(1):125-129.
[16] Huang J J,Yang F L,Guo Y J,et al.LiMgxMn2-xO4(x≤0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature[J].Ceramics International,2015,41(8):9662-9667.
[17] 解静,李世友,李春雷,等.高功率型镍锰酸锂正极材料的研究进展[J].化工新型材料,2018,46(7):254-257.
[18] Liang X L,Qiao Z,Liu H W.et al.Ionothermal synthesis and enhanced electrochemical performance of nanostructure Cr-doped LiMn2O4 for lithium-ion batteries[J].Ionics,2015,21(6):1517-1523.
[19] Thirunakaran R,Kim K T,Kang Y M,et al.Adipic acid assisted,sol-gel route for synthesis of LiCrxMn2-xO4 cathode material[J].Journal of Power Sources,2004,137(1):100-104.
[20] 周巧,李学良,尤亚华,等.铬掺杂锰酸锂的正极材料离子热法制备及其性能[J].无机盐工业,2015.47(4):62-64.
[21] 刘利平,尹静涛.铬离子掺杂锰酸锂电池高温溶解性的图像分析[J].电源技术,2017,41(8):1121-1123.
[22] Song H,Zhao Y,Niu Y,et al.Applications of LiCrxMn2-xO4 cathode material with high capacity and high rate in high-temperature battery[J].Solid State Ionics,2018,325:67-73.
[23] 刘贵阳,刘杰,何英,等.低温熔盐燃烧法制备LiMn2O4[J].稀有金属材料与工程,2009,38(S2):22-25.