以浓度不同的钛酸二异丙酯溶液为前驱体,在掺氟氧化锡(FTO)基体上通过先旋涂再烧结的方法得到厚度0~153nm的TiO2致密层,用不同厚度的TiO2致密层封装成液结钙钛矿太阳电池并研究了TiO2致密层对液结钙钛矿太阳电池光电性能的影响。结果表明,随着TiO2致密层厚度的增加,其对FTO基体的覆盖率提高直至覆盖整个基体。电化学性能测试表明,FTO基体与TiO2致密层之间界面的肖特基势垒能够有效增加界面处的电荷转移电阻,进而显著提升电池的光电转换性能。
Took the diisopropyl titanate solution with different concentrations as the precursors,TiO2 compact layers series with the thickness of 0~153nm were prepared on the F doped SnO2 substrate (FTO) through the method of spin-coating and then sintering.Subsequently,the compact layers were assembled into perovskite solar cells,and the photovoltaic performance of the solar cells with different compact layers was studied.The result shown that the coverage ratio of the substrate was increased by increasing the thickness of the compact layer,and the substrate will be fully covered in the final.The result of electrochemical properties shown that the schottky barrier at the FTO substrate and TiO2 compact layer interface will increase the charge transfer resistance efficiently,which will further improve the photovoltaic performance of the solar cells.
[1] O'Regan B,Grtzel M.Low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J].Nature,1991,353(6346):737-740.
[2] Kenji K.An achievement of over 12% efficiency in an organic dye-sensitized solar cell[J].Chem Commun,2014,48(50):6379-6381.
[3] Mathew S,Yella A,Gao P,et al.Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J].Nat Chem,2014,6(3):242-247.
[4] Kongkanand A,Tvrdy K,Takechi K,et al.Quantum dot solar cells.tuning photoresponse through size and shape control of CdSe-TiO2 architecture[J].J Am Chem Soc,2008,130(12):4007-4015.
[5] Kamat P V.Quantum dot solar cells.semiconductor nanocrystals as light harvesters[J].J Phys Chem C,2008,112(48):18737-18753.
[6] Jiang T.Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J].Nat Mater,2011,10(10):765-671.
[7] Kramer I J,Sargent E H.Colloidal quantum dot photovoltaics:a path forward[J].ACS Nano,2011,5(11):8506.
[8] Kojima A,Teshima K,Shirai Y,et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].J Am Chem Soc,2009,131(17):6050-6051.
[9] Lee M M,Teuscher J,Miyasaka T,et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643-647.
[10] Green M A,Ho-Baillie A,Snaith H J.The emergence of perovskite solar cells[J].Nat Photon,2014,8(7):506-514.
[11] Bretschneider S A,Weickert J,Dorman J A,et al.Research update:physical and electrical characteristics of lead halide perovskites for solar cell applications[J].APL Mater,2014,2(4):40701.
[12] Burke A,Ito S,Snaith H,et al.The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “Planar” organic dyes[J].Nano Lett,2008,8(4):977-981.
[13] Hart J N,Menzies D,Cheng Y B,et al.TiO2 sol-gel blocking layers for dye-sensitized solar cells[J].Compters Rendus Chimie,2006,9(5):622-626.
[14] Peng B,Jungmann G,Jger C,et al.Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells[J].Coordin Chem Rev,2004,248(13):1479-1489.
[15] Fang Y,Ai Xianglong,Wang X,et al.Effect of TiOx compact layer with varied components on the performance of dye-sensitized solar cells[J].Journal of Alloys and Compounds,2014,594:211-216.
[16] Im J H,Lee C R,Lee J W,et al.6.5% efficient perovskite quantum-dot-sensitized solar cell[J].Nanoscale,2011,3(10):4088-4093.
[17] Baikie T,Fang Y,Kadro J M,et al.Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J].J Mater Chem A,2013,1(18):5628-5641.
[18] He X L,Yang G J,Yao H L,et al.Strategy to improve the performance of dye-sensitized solar cells based on TiO2 films prepared by room temperature cold spray[J].Rare Metal Mater Engin,2012,41:190-194.
[19] 王菁,李美成,吴敢.降低肖特基势垒高度的途径探讨[J].半导体光电,2000,21(4):261-265.