选用硅烷偶联剂(KH-560)改性纳米SiO2溶胶,然后将其与含氟聚丙烯酸酯乳液、成膜助剂醇酯-12、适量颜填料及其他助剂混合制备复合乳液。运用Zetasizer Nano仪器、傅里叶变换红外光谱表征改性后纳米SiO2溶胶的粒径大小及结构,并运用热重分析、扫描电镜、动态接触角等手段对复合涂层的热稳定性、形貌和疏水性进行表征。将其涂覆于混凝土砂浆试件,进行各项性能测试。结果表明:采用纳米SiO2溶胶(掺量为20%时)改性含氟丙烯酸乳液时,复合涂层的附着力为1.92MPa,铅笔硬度为5H,耐冲击强度最大可高于50cm,耐酸碱盐腐蚀率分别为16%、11%、10%,耐老化性色差为0.5,接触角为103.57°,吸水率为0.75,适用于腐蚀环境下混凝土的长效防护。
Nano-SiO2 sol was modified by γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH-560),and then it was combined with fluorinated acrylate emulsion,alcohol ester-12 as filming additive,proper amount of pigment filler and other additives to make into a composite coating.The particle size and the structure of the SiO2 sol modified by KH-560 were measured by zetasizer nano instrument and fourier transform infrared spectroscopy.The thermal stability,morphology and hydrophobicity of the coating were measured by thermogravimetric analysis,scanning electron microscopy and dynamic contact angle.It was applied to a concrete mortar test piece for various performance tests.The results shown that when the nano-SiO2 sol (the dosage was 20%) was used to modify the fluorine-containing acrylic emulsion,the adhesion of the coating was 1.92MPa,the pencil hardness was 5H,the impact strength was up to 50cm,the corrosion resistance of acid and alkali salts was 16%,11%,10%,the aging resistance was 0.5,the contact angle was 103.57°,and the water absorption was 0.75,which was suitable for long-term protection of concrete in corrosive environment.
[1] Pan X Y,Shi Z G,Shi C J,et al.A review on concrete surface treatment part Ⅰ:types and mechanisms[J].Construction and Building Materials,2017(132):578-590.
[2] Zhang G L,Xie Q Y,Ma C F,et al.Permeable epoxy coating with reactive solvent for anticorrosion of concrete[J].Progress in Organic Coatings,2018(117):29-34.
[3] 房亚楠,秦立光,赵文杰,等.氟碳涂料在防腐领域的研发现状和发展趋势[J].中国腐蚀与防护学报,2016,36(2):97-106.
[4] 单文雯.纳米材料改性水性防腐涂料的研究进展[J].广州化工,2019,47(14):17-19.
[5] 杨统林,赵中华,肖建军,等.纳米材料的改性及其在涂料中的应用研究进展[J].化工新型材料,2019,47(5):10-13.
[6] Chen L,Song R G,Li X W,et al.The improvement of corrosion resistance of fluoropolymer coatings by SiO2/poly(styrene-co-butyl acrylate) nanocomposite particles[J].Applied Surface Science,2015(353):254-262.
[7] 武勇斌,江涛,潘洪革.纳米硅溶胶表面接枝改性的机理研究[J].石化技术,2018,25(5):260-261.
[8] 周楠,戴雷,史述宾,等.改性硅溶胶的研究现状及进展[J].中国胶粘剂,2016,25(11):54-59.
[9] Dolatzadeh F,Moradian S,Jalili M M.Influence of various surface treated silica nanoparticles on the electrochemical properties of SiO2/polyurethane nanocoatings[J].Corrosion Science,2011,53(12):4248-4257.
[10] 陈亮,宋仁国,郭燕清,等.改性纳米SiO2/三氟型FEVE复合氟碳涂料的制备及其性能[J].材料保护,2014,47(12):19-23.
[11] 杨耀彬,李永超,高缘.纳米SiO2改性的研究进展[J].山东化工,2019,48(13):64-66.
[12] 陈博,陈学琴,任军,等.纳米二氧化硅表面改性研究进展[J].有机硅材料,2017,31(5):396-400.
[13] 周志文.硅溶胶改性环氧树脂复合乳液的制备及性能研究[D].南昌:南昌航空大学,2013.
[14] 杨光,邓安仲,陈静波.偶联剂改性纳米硅溶胶的接枝率及稳定性[J].材料科学与工程学报,2018,36(2):286-290.
[15] Li X H,Cao Z,Zhang Z J,et al.Surface-modification in situ of nano-SiO2 and its structure and tribological properties[J].Applied Surface Science,2004,252(22):7856-7861.
[16] Ammar S,Ramesh K,Vengadaesvaran B,et al.A novel coating material that uses nano-sized SiO2 particles to intensify hydrophobicity and corrosion protection properties[J].Electrochimic Acta,2016,220:417-426.
[17] 周彦瑜,闫小星,钱星雨,等.二氧化硅和硅烷偶联剂协同改性对水性涂料性能的影响[J].科技创新与应用,2018(3):35-36.
[18] 高敬民.纳米SiO2改性核壳型氟碳乳液的制备及水性绿色涂料的性能研究[D].兰州:西北师范大学,2007.
[19] 杨晓武,李鑫,陈洪伟,等.KH-570改性纳米SiO2及其在外墙涂料中的应用研究[J].陕西科技大学学报(自然科学版),2016,34(3):111-115.
[20] Liu G F,Wu G M,Chen J,et al.Synthesis,modification and properties of rosin-based non-isocyanate polyurethanes resin[J].Progress in Organic Resin,2016,101(16):461-467.
[21] Wang W,Guo Y L,Otaigbe J U,et al.The synthesis characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites[J].Polymer,2009,50(24):5749-5757.
[22] 宋莉芳,陈彤丹,文一平,等.混凝土用水性氟碳涂料的制备及耐腐蚀性能评价[J].化学研究与应用,2019,31(6):1209-1215.