综述与专论

选择性激光烧结3D打印粉体材料研究进展

展开
  • 1.高分子材料工程国家重点实验室,四川大学高分子研究所,成都610065;
    2.南京墨分三维科技有限公司,南京210000
甘鑫鹏(1994-),男,硕士,主要研究方向为3D打印功能性复合材料。

收稿日期: 2019-04-18

  修回日期: 2019-06-17

  网络出版日期: 2020-10-23

基金资助

科技部国家重点研发计划政府间国际科技创新合作重点专项(2017YFE0111500);欧洲地平线2020玛丽居里项目(734164)

Progress on polymer material for SLS 3D printing

Expand
  • 1. State Key Laboratory of Polymer Materials Engineering,Polymer Research Institute,Sichuan University,Chengdu 610065;
    2. Nanjing Mophene 3D Technology Co.,Ltd.,Nanjing 210000

Received date: 2019-04-18

  Revised date: 2019-06-17

  Online published: 2020-10-23

摘要

目前适用于选择性激光烧结技术(SLS)的聚合物粉体种类较少,关于粉体特别是功能导电复合粉体烧结制件性能的影响因素研究还不够清晰。为了建立系统的SLS粉体性能评估流程,为开发SLS新型粉体材料提供理论参考,综述了SLS 3D粉体的性能对打印的影响及其表征方法,并总结了SLS制备导电复合材料的影响因素。

本文引用格式

甘鑫鹏, 王金志, 费国霞, 周星红, 夏和生 . 选择性激光烧结3D打印粉体材料研究进展[J]. 化工新型材料, 2020 , 48(8) : 27 -31 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.08.006

Abstract

Presently there are few types of polymer powders suitable for selective laser sintering (SLS).The researches on the influencing factors of polymer powders,especially functional conductive composite powders sintered parts are not clear enough.In order to establish a systematic SLS powder performance evaluation process,provide a theoretical reference for the development of SLS new powder materials,the influences of SLS 3D powder properties on printing and its measurement methods were reviewed in detail,and the factors affecting the performance of SLS conductive composites were summarized.

参考文献

[1] 李鹏,熊惟皓.选择性激光烧结的原理及应用[J].材料导报,2002,16(6):55-58.
[2] Williams J V,Revington P J.Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture[J].Int J Oral & Maxillofacial Surgery,2010,39(2):0-184.
[3] Duan B,Wang M.Selective laser sintering and its application in biomedical engineering[J].MRS Bull,2011,36(12):998-1005.
[4] Kumaresan T,Gandhinathan R,Ramu M,et al.Design,analysis and fabrication of polyamide/hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications[J].J Mech Sci Technol,2016,30(11):5305-5312.
[5] Wu G,Zhou B,Bi Y,et al.Selective laser sintering technology for customized fabrication of facial prostheses[J].J Prosthet Dent,2008,100(1):56-60.
[6] 史玉升,闫春泽,魏青松,等.选择性激光烧结3D打印用高分子复合材料[J].中国科学:信息科学,2015,45(2):204-211.
[7] Goodridge R D,Tuck C J,Hague R J M.Laser sintering of polyamides and other polymers[J].Prog Mater Sci,2012,57(2):229-267.
[8] Gibson I,Shi D.Material properties and fabrication parameters in selective LASER sintering process[J].Rapid Prototyping J,1997,3(4):129-136.
[9] Schmidt M,Pohle D,Rechtenwald T.Selective laser sintering of PEEK[J].CIRP Ann-Manuf Techn,2007,56(1):205-208.
[10] Kruth J P,Wang X,Laoui T,et al.Lasers and materials in selective laser sintering[J].Assembly Autom,2003,23(4):357-371.
[11] 夏和生,李志超,卢锡立,等.用于3D打印、含动态键的聚氨酯材料及其制备方法和用途:中国CN104961881B[P].2015-06-03.
[12] Hoorfar M,Neumann A W.Recent progress in axisymmetric drop shape analysis (ADSA)[J].Adv Colloid Interface Sci,2006,121(1-3):25-49.
[13] Qi F,Chen N,Wang Q.Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO3/CNT ternary nanocomposites[J].Mater Des,2018,143:72-80.
[14] Schmidt J,Sachs M,Blümel C,et al.A novel process route for the production of spherical LBM polymer powders with small size and good flowability[J].Powder Technol,2014,261:78-86.
[15] Zhu W,Yan C,Shi Y,et al.A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites[J].Sci Rep,2016,6:33780.
[16] Cai X,Zhang Y,Wu G.A novel approach to prepare PA6/Fe3O4 microspheres for protein immobilization[J].J Appl Polym Sci,2011,122(4):2271-2277.
[17] Goodridge R D,Dalgarno K,Wood D J.Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications[J].P I Mech Eng H:J Eng,2006,220(1):57-68.
[18] Schmid M,Amado A,Wegener K.Materials perspective of polymers for additive manufacturing with selective laser sintering[J].J Mate Res,2014,29(17):1824-1832.
[19] Berretta S,Ghita O,Evans K E.Morphology of polymeric powders in laser sintering (LS):from polyamide to new PEEK powders[J].Eur Polym J,2014,59:218-229.
[20] Clausen C H,Mickish D J,Nebe W J,et al.Laser sinterable thermoplastic powder:US.6110411A[P].2000-08-29.
[21] Freeman R.Measuring the flow properties of consolidated,conditioned and aerated powders—a comparative study using a powder rheometer and a rotational shear cell[J].Powder Technol,2007,174(1-2):25-33.
[22] Ziegelmeier S,Wöllecke F,Tuck C,et al.Characterizing the bulk & flow behaviour of LS polymer powders[C].In:Solid Freeform Fabrication Symposium,Austin,TX,2013.
[23] Krantz M,Zhang H,Zhu J.Characterization of powder flow:static and dynamic testing[J].Powder Technol,2009,194(3):239-245.
[24] Geldart D,Abdullah E C,Hassanpour A,et al.Characterization of powder flowability using measurement of angle of repose[J].China Particuology,2006,4(3-4):104-107.
[25] Lumay G,Boschini F,Traina K,et al.Measuring the flowing properties of powders and grains[J].Powder Technol,2012,224:19-27.
[26] Li Z,Wang Z,Gan X,et al.Selective Laser Sintering 3D printing:a way to construct 3D electrically conductive segregated network in polymer matrix[J].Macromol.Mater Eng,2017:1700211.
[27] Goodridge R D,Shofner M L,Hague R J M,et al.Processing of a polyamide-12/carbon nanofibre composite by laser sintering[J].Polym Test,2011,30(1):94-100.
[28] Yan C,Hao L,Xu L,et al.Preparation,characterisation and processing of carbon fibre/polyamide-12 composites for selective laser sintering[J].Compos Sci Technol,2011,71(16):1834-1841.
[29] Espera A H,Valino A D,Palaganas J O,et al.3D Printing of a robust polyamide-12-carbon black composite via selective laser sintering:thermal and electrical conductivity[J].Macromol Mater Eng,2019,1800718.
[30] Yuan S,Zheng Y,Chua C K,et al.Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering Compos[J].Part A:Appl S,2018,105:203-213.
[31] Yi X,Tan Z J,Yu W J,et al.Three dimensional printing of carbon/carbon composites by selective laser sintering[J].Carbon,2016,96:603-607.
[32] Eshraghi S,Karevan M,Kalaitzidou K,et al.Processing and properties of electrically conductive nanocomposites;based on polyamide-12 filled with exfoliated graphite nanoplatelets;prepared by selective laser sintering[J].Int J Precis Eng Man,2013,14(11):1947-1951.
[33] Gaikwad S,Tate J S,Theodoropoulou N,et al.Electrical and mechanical properties of PA11 blended with nanographene platelets using industrial twin-screw extruder for selective laser sintering[J].J Compos Mater,2013,47(23):2973-2986.
[34] Guo N,Leu M C.Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering[J].Int J Hydrogen Energ,2012,37(4):3558-3566.
[35] Athreya S R,Kalaitzidou K,Das S.Processing and characterization of a carbon black-filled electrically conductive nylon-12 nanocomposite produced by selective laser sintering[J].Mat Sci Eng A-Struct,2010,527(10-11):2637-2642.
[36] Athreya S R,Kalaitzidou K,Das S.Microstructure,thermomechanical properties,and electrical conductivity of carbon black-filled nylon-12 nanocomposites prepared by selective laser sintering[J].Polym Eng Sci,2011,52(1):12-20.
[37] Tchoudakov R,Breuer O,Narkis M,et al.Conductive polymer blends with low carbon black loading:polypropylene/polyamide[J].Polym Eng Sci,1996,36(10):1336-1346.
Options
文章导航

/