综述与专论

钙钛矿太阳能电池研究进展及面临的挑战

展开
  • 中国华能集团清洁能源技术研究院有限公司,北京102209
熊继光(1988-),男,硕士研究生,主要研究方向为薄膜电池技术的研发与应用。

收稿日期: 2019-04-02

  修回日期: 2020-04-03

  网络出版日期: 2020-10-23

基金资助

中国华能集团有限公司科技项目(TW-16-HJK02)

Research progress and challenge of perovskite solar cells

Expand
  • Huaneng Clean Energy Research Institute,Beijing 102209

Received date: 2019-04-02

  Revised date: 2020-04-03

  Online published: 2020-10-23

摘要

近年来,钙钛矿太阳能电池因性能独特而备受关注。随着钙钛矿太阳能电池技术的飞速发展,钙钛矿太阳能电池器件的能量转换效率不断刷新最高纪录,其能量转换效率从2009年的3.8%增加到目前的23.7%,可与商业化应用的多晶硅太阳能电池、铜铟镓硒(CIGS)、碲化镉(CdTe)薄膜太阳能电池效率媲美。尽管在电池稳定性方面已进行了大量研究工作,但稳定性较差仍是钙钛矿太阳能电池商业化道路上的关隘。总结了钙钛矿太阳能电池的研究进展以及面临的挑战,讨论了内在因素和外在环境对钙钛矿太阳能电池稳定性的影响以及铅毒性、标准化测试协议等问题,指出开发在严苛条件下具有高稳定性的新材料和新型结构设计,将是钙钛矿太阳能电池未来发展的重点。

本文引用格式

熊继光, 秦校军, 董超, 赵志国 . 钙钛矿太阳能电池研究进展及面临的挑战[J]. 化工新型材料, 2020 , 48(8) : 1 -5 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.08.001

Abstract

In recent years,perovskite solar cells (PSCs) have received much attention because of their unique properties.With the rapid development of PSCs technology,the photoelectric conversion efficiency of PSCs devices has continuously set a new record,and its power conversion efficiency has increased from the 3.8% in 2009 to the current 23.7%,the efficiency comparable to commercialized polycrystalline silicon solar cells,copper indium gallium selenide (CIGS) and cadmium telluride (CdTe) thin film solar cells.Although a lot of research work has been done on stability,its limited stability is still a key to the commercialization of PSCs.The research progress and challenges of PSCs were summarized.The problems of internal factors and external environment of PSCs on their stability,lead toxicity problems,and standardized test protocols were discussed.And pointed out that the development of new materials and new structure design with high stability under severe conditions will be the focus of the future development of PSCs.

参考文献

[1] Habisreutinger S N,Leijtens T,Eperon G E,et al.Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J].Nano Lett,2014,14(10):5561-5568.
[2] Gholipour S,Saliba M.From exceptional properties to stability challenges of perovskite solar cells[J].Small,2018,14(46):1802385.
[3] Kojima A,Teshima K,Shirai Y,et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].J Am Chem Soc,2009,131(17):6050-6051.
[4] Xing G,Mathews N,Sun S,et al.Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3[J].Science,2013,342(6156):344-347.
[5] Po-Kai Kung,Li Ming-Hsien,Lin Peiying,et al.A review of inorganic hole transport materials for perovskite solar cells[J].Adv Mater Interfaces,2018,5(22):1800882.
[6] Anaya M,Lozano G,Calvo M E,et al.ABX3 perovskites for tandem solar cells[J].Joule,2017,4:769-793.
[7] Stranks S D,Eperon G E,Grancini G,et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J].Science,2013,342(6156):341-344.
[8] Protesescu L,Yakunin S,Nazarenko O,et al.Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling[J].ACS Appl Nano Mater,2018,1(3):1300-1308.
[9] Kim H S,Lee C R,Im J H,et al.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J].Sci Rep,2012,2:591.
[10] Lee M M,Teuscher J,Miyasaka Tsutomu,et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643-647.
[11] Green M A,Ho-Baillie A,Snaith H J.The emergence of perovskite solar cells[J].Nat Photonics,2014,8:506-514.
[12] Yan J,Saunders B R.Third-generation solar cells:a review and comparison of polymer:fullerene,hybrid polymer and perovskite solar cells[J].RSC Adv,2014,4:43286-43314.
[13] 张继涛.基于溶剂配位—反溶剂萃取法的CH3NH3PbI3钙钛矿薄膜质量调控及其光伏器件性能研究[D].太原:太原理工大学,2017.
[14] David Egger A,Eran Edri,David Cahen,et al.Perovskite solar cells:do we know what we do not know?[J].J Phys Chem Lett,2015,6:279-282.
[15] National Renewable Energy Laboratory.Research cell record efficiency chart and explanatory notes[EB/OL].[2019-01-02].https://www.nrel.gov/pv/assets/pdfs/pv-efciency-chart.20181221.
[16] Wang G,Melkonyan F S,Facchetti A,et al.All-polymer solar cells:recent progress,challenges,and prospects[J].Angewandte Chemie International Edition,2019,58(13):4129-4142.
[17] Yang H J,Zhang Yi,Zhou Y Y,et al.Building bridges between halide perovskite nanocrystals and thin-film solar cells[J].Sustainable Energy Fuels,2018,2:2381-2397.
[18] Dong X,Fang X,Lv M,et al.Improvement of the humidity stability of organic-inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition[J].Journal of Materials Chemistry A,2015,3:5360-5367.
[19] Etgar L,Gao P,Xue Z,et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J].J Am Chem Soc,2012,134:17396-17399.
[20] Ball J M,Lee M M,Hey A,et al.Low-temperature processed meso-superstructured to thin-film perovskite solar cells[J].Energy Environ Sci,2013,6:1739-1743.
[21] Jeon N J,Noh J H,Kim Y C,et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J].Nat Mater,2014,13:897-903.
[22] Yang W S,Noh J H,Jeon N J,et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J].Science,2015,348(6240):1234-1237.
[23] Jeon N J,Noh J H,Yang W S,et al.Compositional engineering of perovskite materials for high-performance solar cells[J].Nature,2015,517:476-480.
[24] Saliba M,Matsui T,Domanski K,et al.Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J].Science,2016,354(6309):206-209.
[25] Yang W S,Park B W,Jung E H,et al.Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J].Science,2017,356(6345):1376-1379.
[26] Tan H,Jain A,Voznyy O,et al.Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J].Science,2017,355:722-726.
[27] Shin S S,Yeom E J,Yang W S,et al.Colloidally prepared La-doped BaSnO3 electrodes for efficient,photostable perovskite solar cells[J].Science,2017,356:167-171.
[28] Lin Yun,Bai Yang,Fang Yanjun,et al.Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures[J].J Phys Chem Lett,2018,9:654-658.
[29] Yuan Y,Huang J.Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability[J].Acc Chem Res,2016,49(2):286-293.
[30] Kato Y,Ono L K,Lee M V,et al.Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes[J].Adv Mater Interfaces,2015,2:1500195.
[31] Back H,Kim G,Kim J,et al.Achieving long-term stable perovskite solar cells via ion neutralization[J].Energy Environ Sci,2016,9:1258-1263.
[32] Domanski K,Correa-Baena J P,Mine N,et al.Not all that glitters is gold:metal-migration-induced degradation in perovskite solar cells[J].ACS Nano,2016,10:6306-6314.
[33] Arora N,Dar M I,Hinderhofer A,et al.Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%[J].Science,2017,358:768-771.
[34] Cheacharoen R,Rolston N,Harwood D,et al.Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling[J].Energy Environ Sci,2018,11:144-150.
[35] Bush K A,Palmstrom A F,Yu Z J,et al.23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability[J].Nat Energy,2017,2:17009.
[36] Zhou H P,Chen Q,Li G,et al.Interface engineering of highly efficient perovskite solar cells[J].Science,2014,345(6196):542-546.
[37] Bass K K,McAnally R E,Zhou S,et al.Influence of moisture on the preparation,crystal structure,and photophysical properties of organohalide perovskites[J].Chem Commun,2014,50:15819-15822.
[38] Li W,Fan J,Mai Y,et al.Aquointermediate assisted highly orientated perovskite thin films toward thermally stable and efficient solar cells[J].Adv Energy Mater,2017,7(2):1601433.
[39] Domanski K,Alharbi E A,Hagfeldt A,et al.Systematic investigation of the impact of operation conditionson the degradation behaviour of perovskite solar cells[J].Nat Energy,2018,3:61-67.
[40] You Jingbi,Meng Lei,Song Tze-Bin,et al.Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J].Nat Nanotechnol,2016,11:75-81.
[41] 余荣斌.基于性能退化的光伏组件服役可靠性评估方法研究[D].广州:华南理工大学,2016.
[42] Pilar Lopez Varo,Jimnez-Tejada J A,Sandheep Ravishankar.Device physics of hybrid perovskite solar cells:theory and experiment[J].Adv Energy Mater,2018,8(14):1702772.
[43] Bhat A,Dhamaniya B,Chhillar P,et al.Analysing the prospects of perovskite solar cells within the purview of recent scientific advancements[J].Crystals,2018,8(6):242.
[44] 李鹞.中国晶体硅太阳能电池板的生命周期评价[D].上海:上海交通大学.2015.
[45] Wang A,Mujahid M,Duan Y,et al.A review of perovskites solar cell stability[J].Adv Funct Mater,2019,29(47):1808843.
Options
文章导航

/