科学研究

铁掺杂介孔水合TiO2光催化剂性能研究

展开
  • 遵义医科大学药学院,遵义 563099
左定财(1992-),男,硕士,主要研究方向为绿色催化。

收稿日期: 2019-05-31

  修回日期: 2020-06-10

  网络出版日期: 2020-10-20

基金资助

国家自然科学基金(21661038)

Influence of mesoporous hydrogen TiO2 doped with Fe3+ on its photocatalytic activity

Expand
  • School of pharmacy,Zunyi Medical University,Zunyi 563099

Received date: 2019-05-31

  Revised date: 2020-06-10

  Online published: 2020-10-20

摘要

采用水热法对介孔水合TiO2光催化剂进行掺铁改性;通过静态氮吸附、X射线衍射、透射电镜、紫外-可见吸收和X射线光电子能谱等手段对掺杂产物进行了表征;以氙灯为可见光源,以亚甲基蓝为目标物研究分析了掺铁产物的光催化活性。结果表明:铁以Fe3+掺入介孔水合TiO2中,铁的掺入虽然会抑制介孔水合TiO2晶粒的生长而减小其比表面积和介孔体积,但能明显地提高介孔水合TiO2在可见光照射下的光催化活性;催化活性提高的重要原因是掺铁会使其光吸收阀值降低而增加可见光的吸收;当掺铁量为0.69%(Fe/Ti摩尔比n)时催化活性最高,其对亚甲基蓝的降解效率是未掺铁产物的1.5倍,光催化循环4次后的降解率仍大于80%。

本文引用格式

左定财, 钟永科, 范会, 张鹃 . 铁掺杂介孔水合TiO2光催化剂性能研究[J]. 化工新型材料, 2020 , 48(9) : 207 -211 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.09.045

Abstract

Fe-doped mesoporous TiO2 were prepared by one-step hydrothermal method.The Fe-doped samples were characterized by nitrongen-adsorption,X-ray diffraction (XRD),transmission electron microscopy (TEM),UV-Vis spectrophotometer and X-ray photoelectron spectroscopy (XPS).Their photocatalytic activities were evaluated by using methylene blue (MB) as model pollutant under xenon lamp.The results indicated that the doped Fe reduced specific surface area and mesoporous volume of the Fe-doped sample,while it can broaden the light response range of the Fe-doped sample,enabling the light absorption threshold (λg) of the typical Fe-doped sample increase to 441 nm from the lower 406 nm of the undoped sample,and thus increased the photocatalytic activities under visible light irradition.In addition,the results showed that the typical Fe-doped sample with Fe/Ti molar ratio of 0.69% presented the highest photocatalytic activity to MB.After 4 cycles of photocatalytic degradation to MB,the Fe-doped sample presented a small loss of the photocatalytic activity.

参考文献

[1] Kubo T,Takeuchim M,Matsuoka M,et al.Morphologic control of Pt supported titanate nanotubes and their photocatalytic property[J].Catal Lett,2009,130(1-2):28-36.
[2] Palmisano G,Augugliaro V,Pagliaro M,et al.Photocatalysis:a promising route for 21st century organic chemistry[J].Chem Commun,2007,33:3425-3437.
[3] Chen X,Mao S S.Titanium dioxide nanomaterials:synthesis,properties,modifications,and applications[J].Chem Rev,2007,107:2891-2959.
[4] Yin L,Wang P Y,Wen T,et al.Synthesis of layered titanate nanowires at low temperature and their application in efficient removal of U(Ⅵ)[J].Environ Pollut,2017,226:125-134.
[5] Pei L Z,Liu H D,Lin N,et al.Synthesis,characterization and photocatalytic properties of lithium titanate nanorods[J].Int J Nanosci,2015,14(4-6):1550020.
[6] Chen Q,Du G H,Zhang S,et al.The structrue of trititanate nanotubes[J].Acta Cryst,2002,58(4):587-593.
[7] Yan C Y,Chen K F,Lai C H,et al.Photocatalytic degradation of rhodamine B by microwave-assisted hydrothermal synthesized N-doped titanate nanotubes[J].J Environ Sci,2014,26(7):1505-1512.
[8] Nakahira A,Kato W,Tamaim M,et al.Synthesis of nanotube from a layered H2Ti4O9 center dot H2O in a hydrothermal treatment using various titania sources[J].J Mater Sci,2004,39:4239-4245.
[9] Chen F J,Zhou G W,Chen H J,et al.Easy synthesis of layered titanate nanosheets with 3D hierarchical flower-like structures[J].RSC Advances,2014,4(78):41678-41682.
[10] Chen Q,Peng L M.Structure and applications of titanate and related nanostructures[J].Int J Nanotechnol,2007,4(1-2):44-65.
[11] 李明明.介孔纳米二氧化钛的制备及其光催化活性[D].遵义:遵义医学院,2016.
[12] Lee C K,Wang C C,Lyu M D,et al.Effects of sodium content and calcination temperature on the morphology,structure and photocatalytic activity of nanotubular titanates[J].J Colloid Interf Sci,2007,316(2):562-569.
[13] Sun X M,Li Y D.Synthesis and characterization of ion-exchangeable titanate nanotubes[J].Chem Eur J,2003,9:2229-2238.
[14] Ding X,Xu X G,Chen Q,et al.Preparation and characterization of Fe-incorporated titanate nanotubes[J].Nanotechnology,2006,17:5423-5427.
[15] Hodos M,Horyath E,Haspel H,et al.Photosensitization of ion exchangeable titanate nanotubes by CdS nano-particles[J].Chem Phys Lett,2004,399:512-515.
[16] 钟永科,李明明,范会.一种高活性介孔水合氧化钛粉体的制备方法.ZL 201610017249.2[P].2018-08-08.
[17] Ismail A D,Bahnemann D W.Mesoporous titania photocatalysts:preparation,characterization and reaction mechanisms[J].J Mater Chem,2011,21:11686-11707.
[18] 辛勤,罗孟飞.现代催化研究方法[M].第1版.北京:科学出版社,2009,24-25.
[19] Xing M,Wu Y,Zhang J,et al.Effect of synergy on the visible light activity of B,N and Fe co-doped TiO2 for the degradation of MO[J].Nanoscale,2010,2(7):1233.
[20] Suzukia Y,Yoshikawa S.Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method[J].J Mater Res,2004,19(4):982-985.
[21] 周雅琪,杨颖,许文来.铁氮共掺杂多孔二氧化钛的制备及其亚甲基蓝降解性能研究[J].广东化工,2015,42(1):7-8.
[22] Liu R L,Ye H Y,Xing X P,et al.Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property[J].Mater Chem Phys,2010,121(3):432-439.
[23] Cong Y,Zhang J L,Chen F,et al.Prepraation,photocatalytic activity,and mechanism of nano-TiO2 codoped wiht nitrogen and iron(Ⅲ)[J].J Phys Chem C,2007,111(28):10618-10623.
[24] Rnae K S,Mhalsikera R,Yinb R,et al.Visible light-sensitive yellow TiO2xNx and Fe-N co-doped Ti1-yFeyO2xNx anatase photocatalysts[J].J Solid State Chem,2006,179:3033-3044.
[25] Wang J,Fan C,Ren Z,et al.N-doped TiO2/C nanocomposites and N-doped TiO2 synthesised at different thermal treatment temperatures with the same hydrothermal precursor[J].Dalton Trans,2014,43(36):13783-13791.
[26] 匡继董,林碧洲,陈亦琳,等.水热沉淀法制备掺铁二氧化钛中空球及其光催化性能[J].催化学报,2010,31(11):1399-1404.
[27] 沈星灿,郭为民,郭艳芳,等.掺铁纳米TiO2的制备及其光催化性能[J].应用化学,2005,22(10):1070-1074.
Options
文章导航

/