综述与专论

金属有机框架材料在多相催化中的研究进展

展开
  • 1.西安科技大学化学与化工学院,西安 710054;
    2.国土资源部煤炭资源勘查与综合利用重点实验室,西安 710021
赵晶晶(1994-),女,硕士研究生,主要从事催化剂制备工作。

收稿日期: 2019-05-30

  修回日期: 2020-06-30

  网络出版日期: 2020-10-20

基金资助

陕西省重点研发计划(2017ZDCXL-GY-10-01-02);陕西省重点研发计划(2018GY-076);西安市科技创新引导项目[201805036YD14CG20(6)];国土资源部煤炭资源勘查与综合利用重点实验室重大专项(SMDZ-2019ZD-2)

Research progress of MOFs material in multiphase catalysis

Expand
  • 1. College of Chemistry and Chemical Engineering,Xi'an University of Science and Technology, Xi'an 710054;
    2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization of Land and Resources,Xi'an 710021

Received date: 2019-05-30

  Revised date: 2020-06-30

  Online published: 2020-10-20

摘要

金属有机框架材料(MOFs)是一种金属离子或金属簇与能提供孤对电子的有机配体通过自组装的方式形成的网状配位聚合物,具有高比表面积、有机配体可功能化、活性位点多且分布均匀等特点。由于MOFs材料本身具有较多孔道,且孔道内存在大量均匀分布的不饱和金属位点,这赋予了其优异的催化性能。主要从MOFs材料作为催化载体材料,金属离子、金属簇、有机配体或修饰过的有机配体作为活性位点进行催化反应等方面介绍其在多相催化方面的应用,并对MOFs材料在催化领域的应用前景进行展望。

本文引用格式

赵晶晶, 杨志远, 孟茁越, 宋晓宇, 鞠晓茜, 龙江 . 金属有机框架材料在多相催化中的研究进展[J]. 化工新型材料, 2020 , 48(9) : 24 -28 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.09.006

Abstract

Metal organic framework material (MOFs) is a kind of mesh coordination polymer formed by self-assembly between metal ions or metal clusters and organic ligands that can provide lone pair electrons,which has the characteristics of high specific surface area,functionalized organic ligands,and many and uniform active sites.MOFs itself has many channels,and there are a large number of uniformly distributed unsaturated metal sites in the channels,which endows MOFs with excellent catalytic performance.The application of MOFs material in heterogeneous catalysis was introduced from three aspects:MOFs as catalytic carrier material,metal ion or metal cluster as active site,organic ligand and modified organic ligand as active site for catalytic reaction.The application direction of MOFs material in the field of catalysis prospected.

参考文献

[1] 姜宁,邓志勇,王公应,等.金属有机框架材料的制备及在吸附分离CO2中的应用[J].化学进展,2014,26(10):1645-1654.
[2] Farha O K,Eryazici I,Jeong N C,et al.Metal-organic framework materials with ultrahigh surface areas:is the sky the limit?[J].Journal of the American Chemical Society,2012,134(36):15016-15021.
[3] Tranchemontagne D J,Hunt J R,Yaghi O M.Room temperature synthesis of metal-organic frameworks:MOF-5,MOF-74,MOF-177,MOF-199,and IRMOF-0[J].Tetrahedron,2008,64(36):8553-8557.
[4] Sculley J,Yuan D,Zhou H C.The current status of hydrogen storage in metal-organic frameworks-updated[J].Energy & Environmental Science,2011,4(8):2721-2735.
[5] Bae Y S,Spokoyny A M,Farha O K,et al.Separation of gas mixtures using Co(Ⅱ) carborane-based porouscoordinationpolymers[J].Chemical Communications,2010,46(20):3478-3480.
[6] Allendorf M D,Bauer C A,Bhakta R K,et al.Luminescent metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1330-1352.
[7] Wang J C,Ding F W,Ma J P,et al.Co(Ⅱ)-MOF:a highly efficient organic oxidation catalyst with open metal sites[J].Inorganic Chemistry,2015,54(22):10865-10872.
[8] Chen Y Z,Cai G,Wang Y,et al.Palladium nanoparticles stabilized with N-doped porous carbons derived from metal-organic frameworks for selective catalysis in biofuel upgrade:the role of catalyst wettability[J].Green Chemistry,2016,18(5):1212-1217.
[9] Wang H,Li X,Lan X,et al.Supported ultrafine NiCo bimetallic alloy nanoparticles derived from bimetal-organic frameworks:a highly active catalyst for furfuryl alcohol hydrogenation[J].ACS Catalysis,2018,8(3):2121-2128.
[10] Zhang W,Zheng B,Shi W,et al.Site-selective catalysis of a multifunctional linear molecule:the steric hindrance of metal-organic framework channels[J].Advanced Materials,2018,30(23):1800643.
[11] Wu M X,Yang Y W.Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy[J].Advanced Materials,2017,29(23):1606134.
[12] Howarth A J,Liu Y,Li P,et al.Chemical,thermal and mechanical stabilities of metal-organic frameworks[J].Nature Reviews Materials,2016,1(3):15018.
[13] 汤甲.金属有机骨架材料的催化应用研究[D].北京:北京科技大学,2017.
[14] Eddaoudi M,Kim J,Rosi N,et al.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J].Science,2002,295(5554):469-472.
[15] Kaye S S,Dailly A,Yaghi O M,et al.Impact of preparation and handling on the hydrogen storage properties of Zn4O (1,4-benzenedicarboxylate)3 (MOF-5)[J].Journal of the American Chemical Society,2007,129(46):14176-14177.
[16] 余苏叶.掺杂对络合物和MOF-5储放氢性能影响的多尺度模拟[D].北京:北京科技大学,2018.
[17] Lu G,Hupp J T.Metal-organic frameworks as sensors:a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases[J].Journal of the American Chemical Society,2010,132(23):7832-7833.
[18] Song Q,Nataraj S K,Roussenova M V,et al.Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation[J].Energy & Environmental Science,2012,5(8):8359-8369.
[19] Nguyen L T L,Ky K A L E,Nam T S.A zeolite imidazolate framework ZIF-8 catalyst for friedel-crafts acylation[J].Chinese Journal of Catalysis,2012,33(4-6):688-696.
[20] Huang H,Zhang W,Liu D,et al.Effect of temperature on gas adsorption and separation in ZIF-8:a combined experimental and molecular simulation study[J].Chemical Engineering Science,2011,66(23):6297-6305.
[21] Zhou X,Huang W,Liu J,et al.Quenched breathing effect,enhanced CO2 uptake and improved CO2/CH4 selectivity of MIL-53 (Cr)/graphene oxide composites[J].Chemical Engineering Science,2017,167:98-104.
[22] Chang N,Gu Z Y,Yan X P.Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes[J].Journal of the American Chemical Society,2010,132(39):13645-13647.
[23] Xamena F X L,Abad A,Corma A,et al.MOFs as catalysts:activity,reusability and shape-selectivity of a Pd-containing MOF[J].Journal of Catalysis,2007,250(2):294-298.
[24] Lu G,Li S,Guo Z,et al.Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J].Nature Chemistry,2012,4(4):310.
[25] Wu C D,Zhao M.Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J].Advanced Materials,2017,29(14):1605446.
[26] Zhang W,Lu G,Cui C,et al.A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles[J].Advanced Materials,2014,26(24):4056-4060.
[27] 王玲,王千瑞,熊焰,等.金属有机骨架材料在催化领域的研究进展[J].硅酸盐通报,2016,35(6):1756-1760.
[28] Jiao L,Wang Y,Jiang H L,et al.Metal-organic frameworks as platforms for catalytic applications[J].Advanced Materials,2018,30(37):1703663.
[29] Yang Y,Yao H F,Xi F G,et al.Amino-functionalized Zr(Ⅳ) metal-organic framework as bifunctional acid-base catalyst for Knoevenagel condensation[J].Journal of Molecular Catalysis A:Chemical,2014,390:198-205.
[30] 赵楠,邓洪平,舒谋海.MOF-5负载Pd催化剂的制备及其催化性能初探[J].无机化学学报,2010,26(7):1213-1217.
[31] 刘宏利.MIL-101负载金属纳米催化剂的制备及其绿色催化研究[D].广州:华南理工大学,2013.
[32] Chen L,Chen H,Li Y.One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents[J].Chemical Communications,2014,50(94):14752-14755.
[33] Poungsombate A,Imyen T,Dittanet P,et al.Direct synthesis of dimethyl carbonate from CO2 and methanol by supported bimetallic Cu-Ni/ZIF-8 MOF catalysts[J].Journal of the Taiwan Institute of Chemical Engineers,2017,80:16-24.
[34] Wang J C,Ding F W,Ma J P,et al.Co(Ⅱ)-MOF:a highly efficient organic oxidation catalyst with open metal sites[J].Inorganic Chemistry,2015,54(22):10865-10872.
[35] Sun X,Shi Y,Zhang W,et al.A new type Ni-MOF catalyst with high stability for selective catalytic reduction of NOx with NH3[J].Catalysis Communications,2018,114:104-108.
[36] Yang Y,Guo Z,Chen X H,et al.A Ni3O-cluster based porous MOF for catalytic conversion of CO2 to cyclic carbonates[J].Journal of Solid State Chemistry,2019.
[37] Zou R Q,Sakurai H,Han S,et al.Probing the lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer [Cu(5-methylisophthalate)][J].Journal of the American Chemical Society,2007,129(27):8402-8403.
[38] Zhou Y X,Chen Y Z,Hu Y,et al.MIL-101-SO3H:a highly efficient brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions[J].Chemistry-A European Journal,2014,20(46):14976-14980.
[39] Luan Y,Zheng N,Qi Y,et al.Development of aSO3H-functionalized UiO-66 metal-organic framework by postsynthetic modification and studies of its catalytic activities[J].European Journal of Inorganic Chemistry,2014,2014(26):4268-4272.
[40] Martínez F,Orcajo G,Briones D,et al.Catalytic advantages of NH2-modified MIL-53 (Al) materials for Knoevenagel condensation reaction[J].Microporous and Mesoporous Materials,2017,246:43-50.
[41] Hasegawa S,Horike S,Matsuda R,et al.Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand:selective sorption and catalysis[J].Journal of the American Chemical Society,2007,129(9):2607-2614.
[42] Gascon J,Aktay U,Hernandez-Alonso M D,et al.Amino-based metal-organic frameworks as stable,highly active basic catalysts[J].Journal of Catalysis,2009,261(1):75-87.
Options
文章导航

/