[1] 姜宁,邓志勇,王公应,等.金属有机框架材料的制备及在吸附分离CO2中的应用[J].化学进展,2014,26(10):1645-1654.
[2] Farha O K,Eryazici I,Jeong N C,et al.Metal-organic framework materials with ultrahigh surface areas:is the sky the limit?[J].Journal of the American Chemical Society,2012,134(36):15016-15021.
[3] Tranchemontagne D J,Hunt J R,Yaghi O M.Room temperature synthesis of metal-organic frameworks:MOF-5,MOF-74,MOF-177,MOF-199,and IRMOF-0[J].Tetrahedron,2008,64(36):8553-8557.
[4] Sculley J,Yuan D,Zhou H C.The current status of hydrogen storage in metal-organic frameworks-updated[J].Energy & Environmental Science,2011,4(8):2721-2735.
[5] Bae Y S,Spokoyny A M,Farha O K,et al.Separation of gas mixtures using Co(Ⅱ) carborane-based porouscoordinationpolymers[J].Chemical Communications,2010,46(20):3478-3480.
[6] Allendorf M D,Bauer C A,Bhakta R K,et al.Luminescent metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1330-1352.
[7] Wang J C,Ding F W,Ma J P,et al.Co(Ⅱ)-MOF:a highly efficient organic oxidation catalyst with open metal sites[J].Inorganic Chemistry,2015,54(22):10865-10872.
[8] Chen Y Z,Cai G,Wang Y,et al.Palladium nanoparticles stabilized with N-doped porous carbons derived from metal-organic frameworks for selective catalysis in biofuel upgrade:the role of catalyst wettability[J].Green Chemistry,2016,18(5):1212-1217.
[9] Wang H,Li X,Lan X,et al.Supported ultrafine NiCo bimetallic alloy nanoparticles derived from bimetal-organic frameworks:a highly active catalyst for furfuryl alcohol hydrogenation[J].ACS Catalysis,2018,8(3):2121-2128.
[10] Zhang W,Zheng B,Shi W,et al.Site-selective catalysis of a multifunctional linear molecule:the steric hindrance of metal-organic framework channels[J].Advanced Materials,2018,30(23):1800643.
[11] Wu M X,Yang Y W.Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy[J].Advanced Materials,2017,29(23):1606134.
[12] Howarth A J,Liu Y,Li P,et al.Chemical,thermal and mechanical stabilities of metal-organic frameworks[J].Nature Reviews Materials,2016,1(3):15018.
[13] 汤甲.金属有机骨架材料的催化应用研究[D].北京:北京科技大学,2017.
[14] Eddaoudi M,Kim J,Rosi N,et al.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J].Science,2002,295(5554):469-472.
[15] Kaye S S,Dailly A,Yaghi O M,et al.Impact of preparation and handling on the hydrogen storage properties of Zn4O (1,4-benzenedicarboxylate)3 (MOF-5)[J].Journal of the American Chemical Society,2007,129(46):14176-14177.
[16] 余苏叶.掺杂对络合物和MOF-5储放氢性能影响的多尺度模拟[D].北京:北京科技大学,2018.
[17] Lu G,Hupp J T.Metal-organic frameworks as sensors:a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases[J].Journal of the American Chemical Society,2010,132(23):7832-7833.
[18] Song Q,Nataraj S K,Roussenova M V,et al.Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation[J].Energy & Environmental Science,2012,5(8):8359-8369.
[19] Nguyen L T L,Ky K A L E,Nam T S.A zeolite imidazolate framework ZIF-8 catalyst for friedel-crafts acylation[J].Chinese Journal of Catalysis,2012,33(4-6):688-696.
[20] Huang H,Zhang W,Liu D,et al.Effect of temperature on gas adsorption and separation in ZIF-8:a combined experimental and molecular simulation study[J].Chemical Engineering Science,2011,66(23):6297-6305.
[21] Zhou X,Huang W,Liu J,et al.Quenched breathing effect,enhanced CO2 uptake and improved CO2/CH4 selectivity of MIL-53 (Cr)/graphene oxide composites[J].Chemical Engineering Science,2017,167:98-104.
[22] Chang N,Gu Z Y,Yan X P.Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes[J].Journal of the American Chemical Society,2010,132(39):13645-13647.
[23] Xamena F X L,Abad A,Corma A,et al.MOFs as catalysts:activity,reusability and shape-selectivity of a Pd-containing MOF[J].Journal of Catalysis,2007,250(2):294-298.
[24] Lu G,Li S,Guo Z,et al.Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J].Nature Chemistry,2012,4(4):310.
[25] Wu C D,Zhao M.Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis[J].Advanced Materials,2017,29(14):1605446.
[26] Zhang W,Lu G,Cui C,et al.A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles[J].Advanced Materials,2014,26(24):4056-4060.
[27] 王玲,王千瑞,熊焰,等.金属有机骨架材料在催化领域的研究进展[J].硅酸盐通报,2016,35(6):1756-1760.
[28] Jiao L,Wang Y,Jiang H L,et al.Metal-organic frameworks as platforms for catalytic applications[J].Advanced Materials,2018,30(37):1703663.
[29] Yang Y,Yao H F,Xi F G,et al.Amino-functionalized Zr(Ⅳ) metal-organic framework as bifunctional acid-base catalyst for Knoevenagel condensation[J].Journal of Molecular Catalysis A:Chemical,2014,390:198-205.
[30] 赵楠,邓洪平,舒谋海.MOF-5负载Pd催化剂的制备及其催化性能初探[J].无机化学学报,2010,26(7):1213-1217.
[31] 刘宏利.MIL-101负载金属纳米催化剂的制备及其绿色催化研究[D].广州:华南理工大学,2013.
[32] Chen L,Chen H,Li Y.One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents[J].Chemical Communications,2014,50(94):14752-14755.
[33] Poungsombate A,Imyen T,Dittanet P,et al.Direct synthesis of dimethyl carbonate from CO2 and methanol by supported bimetallic Cu-Ni/ZIF-8 MOF catalysts[J].Journal of the Taiwan Institute of Chemical Engineers,2017,80:16-24.
[34] Wang J C,Ding F W,Ma J P,et al.Co(Ⅱ)-MOF:a highly efficient organic oxidation catalyst with open metal sites[J].Inorganic Chemistry,2015,54(22):10865-10872.
[35] Sun X,Shi Y,Zhang W,et al.A new type Ni-MOF catalyst with high stability for selective catalytic reduction of NOx with NH3[J].Catalysis Communications,2018,114:104-108.
[36] Yang Y,Guo Z,Chen X H,et al.A Ni3O-cluster based porous MOF for catalytic conversion of CO2 to cyclic carbonates[J].Journal of Solid State Chemistry,2019.
[37] Zou R Q,Sakurai H,Han S,et al.Probing the lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer [Cu(5-methylisophthalate)][J].Journal of the American Chemical Society,2007,129(27):8402-8403.
[38] Zhou Y X,Chen Y Z,Hu Y,et al.MIL-101-SO3H:a highly efficient brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions[J].Chemistry-A European Journal,2014,20(46):14976-14980.
[39] Luan Y,Zheng N,Qi Y,et al.Development of aSO3H-functionalized UiO-66 metal-organic framework by postsynthetic modification and studies of its catalytic activities[J].European Journal of Inorganic Chemistry,2014,2014(26):4268-4272.
[40] Martínez F,Orcajo G,Briones D,et al.Catalytic advantages of NH2-modified MIL-53 (Al) materials for Knoevenagel condensation reaction[J].Microporous and Mesoporous Materials,2017,246:43-50.
[41] Hasegawa S,Horike S,Matsuda R,et al.Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand:selective sorption and catalysis[J].Journal of the American Chemical Society,2007,129(9):2607-2614.
[42] Gascon J,Aktay U,Hernandez-Alonso M D,et al.Amino-based metal-organic frameworks as stable,highly active basic catalysts[J].Journal of Catalysis,2009,261(1):75-87.