综述与专论

硅烯热电输运特性研究进展

  • 李耑 ,
  • 刘远超 ,
  • 马玉锴 ,
  • 刘新昊 ,
  • 李梓硕
展开
  • 北京石油化工学院机械工程学院,北京 102617
李耑(1998-),男,硕士研究生,主要从事低维半导体材料热/电输运特性研究,E-mail:ld0902@yeah.net。
刘远超(1977-),男,副教授,主要从事微纳尺度传热学、燃烧理论与低污染控制等研究,E-mail:liuyuanchao@bipt.edu.cn。

收稿日期: 2024-05-17

  修回日期: 2024-10-10

  网络出版日期: 2025-07-22

基金资助

国家自然科学基金(51106012);北京市大学生科学研究与创业行动计划项目(2025J00055)

Research progress in the thermoelectric transport properties of silicene

  • Li Duan ,
  • Liu Yuanchao ,
  • Ma Yukai ,
  • Liu Xinhao ,
  • Li Zishuo
Expand
  • School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617

Received date: 2024-05-17

  Revised date: 2024-10-10

  Online published: 2025-07-22

摘要

硅烯是一种石墨烯的硅类似物,由sp2和sp3硅原子组成,具有丰富的硅化学键、特殊的原子结构和优异的半导体性能,在热电材料领域具有广阔的应用前景。从第一性原理计算的角度,综述了硅烯热电输运特性的研究进展,阐述了其微观机理,分析了不同调控方式对硅烯热电输运特性的影响。

本文引用格式

李耑 , 刘远超 , 马玉锴 , 刘新昊 , 李梓硕 . 硅烯热电输运特性研究进展[J]. 化工新型材料, 2025 , 53(7) : 48 -54 . DOI: 10.19817/j.cnki.issn1006-3536.2025.07.001

Abstract

Silicene,a silicon analogue of graphene,is composed of sp2 and sp3 hybridized silicon atoms.It exhibits a rich array of silicon chemical bonds,a distinctive atomic structure,and superior semiconductor properties,making it highly promising for applications in the field of thermoelectric materials.This paper provided a comprehensive review of the research progress on the thermoelectric transport properties of silicene from the perspective of first-principles calculations.It elucidated its microscopic mechanisms and analyzed the effects of various modulation methods on the thermoelectric transport characteristics of silicene.

参考文献

[1] Dong Baokun,Zhang Ting,He Fan.Research progress and application of flexible thermoelectric materials[J].Progress in Chemistry,2023,35(3):433-444.
[2] Liu Y,Huang Y,Duan X.Van der waals integration before and beyond two-dimensional materials[J].Nature,2019,567(7748):323-333.
[3] Butler S Z,Hollen S M,Cao L,et al.Progress,challenges,and opportunities in two-dimensional materials beyond graphene[J].ACS Nano,2013,7(4):2898-2926.
[4] 李柯仁,奚忆莲,冯海凤,等.低维量子材料的研究进展[J].自然杂志,2023,45(5):329-339.
[5] Takeda K,Shiraishi K.Theoretical possibility of stage corrugation in Si and Ge analogs of graphite[J].Physical Review B,1994,50(20):14916-14922.
[6] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[7] Vogt P,de Padova P,Quaresima C,et al.Silicene:compelling experimental evidence for graphenelike two-dimensional silicon[J].Physical Review Letters,2012,108(15):1-5.
[8] Peng Q,Wen X,de S.Mechanical stabilities of silicene[J].RSC Advances,2013,3(33):13772-13781.
[9] Xu P,Yu Z,Yang C,et al.Comparative study on the nonlinear properties of bilayer graphene and silicene under tension[J].Superlattices and Microstructures,2014,75:647-656.
[10] Masson L,Prévot G.Epitaxial growth and structural properties of silicene and other 2D allotropes of Si[J].Nanoscale Advances,2023,5(6):1574-1599.
[11] Feng B,Ding Z,Meng S,et al.Evidence of silicene in honeycomb structures of silicon on Ag(111)[J].Nano Letters,2012,12(7):3507-3511.
[12] Meng L,Wang Y,Zhang L,et al.Buckled silicene formation on Ir(111)[J].Nano Letters,2013,13(2):685-690.
[13] Gu X,Yang R.First-principles prediction of phononic thermal conductivity of silicene:a comparison with graphene[J].Journal of Applied Physics,2015,117(2):1-14.
[14] Xie H,Hu M,Bao H.Thermal conductivity of silicene from first-principles[J].Applied Physics Letters,2014,104(13):1-4.
[15] Ng T Y,Yeo J,Liu Z.Molecular dynamics simulation of the thermal conductivity of shorts strips of graphene and silicene:a comparative study[J].International Journal of Mechanics and Materials in Design,2013,9:105-114.
[16] Peng B,Zhang H,Shao H,et al.First-principles prediction of ultralow lattice thermal conductivity of dumbbell silicene:a comparison with low-buckled silicene[J].ACS Applied Materials & Interfaces,2016,8(32):20977-20985.
[17] Han X,Ouyang T,Germaneau É,et al.Unexpectedly large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain[J].Physical Review B,2015,93:1-19.
[18] Wang Z,Feng T,Ruan X.Thermal conductivity and spectral phonon properties of freestanding and supported silicene[J].Journal of Applied Physics,2015,117(8):1-10.
[19] Guo Y,Zhou S,Bai Y,et al.Tunable thermal conductivity of silicene by germanium doping[J].Journal of Superconductivity and Novel Magnetism,2016,29(1):717-720.
[20] Qin G,Qin Z,Yue S Y,et al.External electric field driving the ultra-low thermal conductivity of silicene[J].Nanoscale,2017,9(21):7227-7234.
[21] Liu Z,Wu X,Luo T.The impact of hydrogenation on the thermal transport of silicene[J].2D Materials,2017,4(2):1-11.
[22] Xu R F,Han K,Li H P.Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons:a molecular dynamics study[J].Chinese Physics B,2018,27(2):1-6.
[23] Cui L,Shi S,Li Z,et al.Reduction of thermal conductivity in silicene nanomesh:insights from coherent and incoherent phonon transport[J].Physical Chemistry Chemical Physics,2018,20(42):27169-27175.
[24] Noshin M,Khan A I,Subrina S.Thermal transport characte-rization of stanene/silicene heterobilayer and stanene bilayer nanostructures[J].Nanotechnology,2018,29(18):1-11.
[25] Jahan N,Navid I A,Subrina S.Thermal conductivity of silicene nanoribbons:an equilibrium molecular dynamics study[C].2018 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE).IEEE,2018:121-124.
[26] Khalkhali M,Khoeini F,Rajabpour A.Thermal transport in silicene nanotubes:effects of length,grain boundary and strain[J].International Journal of Heat and Mass Transfer,2019,134:503-510.
[27] Gao Z,Zhang Z,Liu G,et al.Ultra-low lattice thermal conductivity of monolayer penta-silicene and penta-germanene[J].Physical Chemistry Chemical Physics,2019,21(47):26033-26040.
[28] Rahman M H,Chowdhury E H,Shahadat M R B,et al.Engineered defects to modulate the phonon thermal conductivity of Silicene:a nonequilibrium molecular dynamics study[J].Computational Materials Science,2021,191:1-10.
[29] Noshin M,Khan A I,Chakraborty R,et al.Modeling and computation of thermal and optical properties in silicene supported honeycomb bilayer and heterobilayer nanostructures[J].Materials Science in Semiconductor Processing,2021,129:1-7.
[30] Liu H,Qin G,Hu M.Uniform strain-dependent thermal conductivity of pentagonal and hexagonal silicene[J].Frontiers in Materials,2021,8:1-11.
[31] Zhou J,Li H,Tang H K,et al.Phonon thermal transport in silicene/graphene heterobilayer nanostructures:effect of interlayer interactions[J].ACS Omega,2022,7(7):5844-5852.
[32] Pourmirzaagha H,Rouhi S.Molecular dynamic simulations of the heat transfer in double-layered graphene/silicene nanosheets[J].Physica B:Condensed Matter,2023,666:1-8.
[33] Liu B,Reddy C D,Jiang J,et al.Thermal conductivity of silicene nanosheets and the effect of isotopic doping[J].Journal of Physics D:Applied Physics,2014,47(16):1-8.
[34] Cao Z,Wang C,Zhang H,et al.Thermal transport in composition graded silicene/germanene heterostructures[J].Chinese Physics B,2023,33(4):1-6.
[35] Cahangirov S,Topsakal M,Aktürk E,et al.Two-and one-dimensional honeycomb structures of silicon and germanium[J].Physical Review Letters,2009,102(23):1-5.
[36] Dávila M E,Le Lay G.Silicene:genesis,remarkable discoveries,and legacy[J].Materials Today Advances,2022,16:1-13.
[37] Shao Z G,Ye X S,Yang L,et al.First-principles calculation of intrinsic carrier mobility of silicene[J].Journal of Applied Physics,2013,114(9):1-3.
[38] Li X,Mullen J T,Zheng H,et al.Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles[J].Physical Review B,2013,87(11):1-9.
[39] Padilha J E,Pontes R B.Free-standing bilayer silicene:the effect of stacking order on the structural,electronic,and transport properties[J].The Journal of Physical Chemistry C,2015,119(7):3818-3825.
[40] Iordanidou K,Houssa M,van den Broek B,et al.Impact of point defects on the electronic and transport properties of silicene nanoribbons[J].Journal of Physics:Condensed Matter,2016,28(3):35302.
[41] Wang Y,Qi R,Jiang Y,et al.Transport and photoelectric properties of 2D silicene/MX2 (M=Mo,W;X=S,Se) heterostructures[J].ACS Omega,2018,3(10):13251-13262.
[42] Wu Z B,Zhang Y Y,Li G,et al.Electronic properties of silicene in BN/silicene van der waals heterostructures[J].Chinese Physics B,2018,27(7):1-6.
[43] Dai X,Zhang L,Jiang Y,et al.Electronic transport properties of phosphorene/graphene (silicene/germanene) bilayer he-terostructures:a first-principles exploration[J].Ceramics International,2019,45(9):11584-11590.
[44] Chuan M W,Wong K L,Hamzah A,et al.Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure[J].Physica E-Low-Dimensional Systems and Nanostructures,2020,116:1-27.
[45] Shojaeverdi B,Zaminpayma E.Influence of vacancy cluster on the electronic transport properties of silicene sheet[J].Physica E-Low-Dimensional Systems and Nanostructures,2020,121:1-8.
[46] Ipaves B,Justo J F,Assali L V C.Functionalized few-layer silicene nanosheets:stability,elastic,structural,and electronic properties[J].Physical Chemistry Chemical Physics,2022,24(15):8705-8715.
[47] Kalwar B A,Fangzong W,Saeed M H,et al.Geometric,spintronic,and opto-electronic properties of 3d transition metals doped silicene:an ab initio study[J].Journal of the Chinese Chemical Society,2022,69(10):1706-1718.
[48] Nguyen T T,Huynh T P T,Nguyen D K.Diverse structural and electronic properties of carbon-substituted armchair silicene nanoribbons:a first-principles study[J].Physica E-Low-Dimensional Systems and Nanostructures,2022,142:1-9.
[49] Bao A,Li X,Guo X,et al.Tuning the structural,electronic,mechanical and optical properties of silicene monolayer by chemical functionalization:a first-principles study[J].Vacuum,2022,203:1-10.
[50] Wang J,Yang H,Yang P.Photoelectric properties of 2D ZnO,graphene,silicene materials and their heterostructures[J].Composites Part B-Engineering,2022,233:1-10.
[51] Kharadi M A,Mittal S,Saha J.Structural,electronic and optical properties of fluorinated bilayer silicene[J].Optical Materials,2023,136:1-8.
[52] Van On V,Rivas-Silva J F,Cocoletzi G H,et al.Feature-rich electronic and magnetic properties in silicene monolayer induced by nitrogenation:a first-principles study[J].Chemical Physics,2023,568:1-8.
[53] Lima K A L,Junior L A R.Unveiling a novel silicene-like material:a DFT study on pentahexoctite-silicon and its optoelectronic characteristics[J].Computational Condensed Matter,2024,39(1):1-7.
[54] Kawaharada Y,Kurosaki K,Uno M,et al.Thermoelectric properties of CoSb3[J].Journal of Alloys and Compounds,2001,315(1-2):193-197.
[55] Yang K,Cahangirov S,Cantarero A,et al.Thermoelectric properties of atomic-thin silicene and germanene nano-structures[J].Physical Review B,2013,89(12):1-15.
[56] Zhao W,Guo Z X,Zhang Y,et al.Enhanced thermoelectric performance of defected silicene nanoribbons[J].Solid State Communications,2016,227:1-8.
[57] Chen F,Ouyang T,Tang C,et al.The thermoelectric perfor-mance of dumbbell silicene nanoribbons[J].Fullerenes,Nanotubes and Carbon Nanostructures,2018,26(9):511-517.
[58] Banerjee L,Sengupta A,Rahaman H.Carrier transport and thermoelectric properties of differently shaped germanene (Ge) and silicene (Si) nanoribbon interconnects[J].IEEE Transactions on Electron Devices,2018,66(1):664-669.
[59] Kaur S,Randhawa D K K,Narang S B.Strain dependence of the thermoelectric performance of porous armchair silicene nanoribbons[J].Journal of Materials Research,2019,34(23):3946-3953.
[60] Gao Z,Wang J S.Thermoelectric penta-silicene with a high room-temperature figure of merit[J].ACS Applied Materials & Interfaces,2020,12(12):14298-14307.
[61] Núñez C,Saiz-Bretín M,Orellana P A,et al.Tuning the thermoelectric response of silicene nanoribbons with vacancies[J].Journal of Physics:Condensed Matter,2020,32(27):1-7.
[62] Gupta N,Verma R.First-principles study of thermoelectric transport properties in low-buckled monolayer silicene[J].Physica B:Condensed Matter,2021,606:1-8.
[63] Gupta N,Verma R.Thermoelectric performance of silicene under uniform biaxial strain:a first principles study[J].Superlattices and Microstructures,2021,156:1-11.
[64] Kim L P T,Vu T T,Tran V T.Effect of electric fields on the electronic and thermoelectric properties of zigzag buckling silicene nanoribbons[J].Advances in Natural Sciences:Nanoscience and Nanotechnology,2021,12(3):1-11.
[65] Leng C,Ren D,Zhang L.Improvement of thermoelectric pro-perties for silicene by the hydrogenation effect[J].Results in Physics,2022,36:1-10.
[66] Shen Y,Ni D,Chen Y,et al.A penta-silicene nanoribbon-based 3D silicon allotrope with high carrier mobility and thermoelectric performance[J].Physical Chemistry Chemical Physics,2022,24(44):27413-27422.
[67] Yan P,Wu Q,Wang C,et al.Excellent thermoelectric transport performance in semiconducting hhk-silicene[J].Physica Scripta,2023,98(11):1-8.
[68] Behzad S.Strategies to optimize the intricate thermoelectric properties of 2D tetragonal silicene for energy harvesting:a computational modeling approach[J].Applied Physics A,2024,130(5):1-16.
[69] Sengupta A.Variable thermoelectric parameters in Si/Ge zNR by electrostrictive application of localized strain[J].Physics Research and Education,2024,2(3):1-15.
Options
文章导航

/