科学研究

用于水系锌离子电池的富氧缺陷α-MnO2电极材料的制备及其性能研究

  • 韩洋 ,
  • 樊姗 ,
  • 戴勤进 ,
  • 严宇琪 ,
  • 樊鹏阳 ,
  • 郑晓英
展开
  • 齐齐哈尔大学材料科学与工程学院,齐齐哈尔 161006
韩洋(1998-),女,硕士研究生,主要从事水系锌离子电池金属氧化物正极材料及适配凝胶电解质的应用研究,E-mail:2572959196@qq.com。
樊姗(1981-),女,博士,教授,从事水系锌离子电池电极材料及凝胶电解质研究,E-mail:fanshan@qqhru.edu.cn。

收稿日期: 2024-03-01

  修回日期: 2024-12-11

  网络出版日期: 2025-05-21

基金资助

黑龙江省教育厅基本科研业务专项(145209103)

Preparation and performance of oxygen-rich defect α-MnO2 electrode material for aqueous zinc-ion batteries

  • Han Yang ,
  • Fan Shan ,
  • Dai Qinjin ,
  • Yan Yuqi ,
  • Fan Pengyang ,
  • Zheng Xiaoying
Expand
  • College of Materials Science and Engineering,Qiqihar University,Qiqihar 161006

Received date: 2024-03-01

  Revised date: 2024-12-11

  Online published: 2025-05-21

摘要

电导率差,不可逆的结构转变和缓慢的反应动力学限制了MnO2在水系锌离子电池中的应用。采用水热法制备了具有富氧缺陷的α-MnO2电极材料。富氧缺陷的α-MnO2电极优化了电子结构,增加了材料表面活性位点,提高了正极材料的电化学性能。以α-MnO2为正极材料组装的水系锌离子电池在电流密度0.1A/g条件下放电比容量高达210.47mAh/g,容量保持率为122.6%,表现出优异的电化学性能和循环稳定性。

本文引用格式

韩洋 , 樊姗 , 戴勤进 , 严宇琪 , 樊鹏阳 , 郑晓英 . 用于水系锌离子电池的富氧缺陷α-MnO2电极材料的制备及其性能研究[J]. 化工新型材料, 2025 , 53(5) : 155 -159 . DOI: 10.19817/j.cnki.issn1006-3536.2025.05.002

Abstract

The poor conductivity,irreversible structural transformation and slow reaction kinetics limit the application of MnO2 in aqueous zinc-ion batteries.α-MnO2 electrode materials with oxygen-rich defects were prepared by hydrothermal method.The oxygen-rich defect α-MnO2 electrode optimized the electronic structure,increased the active sites on the surface of the material,and improved the electrochemical performance of the cathode material.The discharge specific capacity of the aqueous zinc-ion battery assembled with α-MnO2 as the cathode material was as high as 210.47mAh/g at a current density of 0.1A/g,and the capacity retention rate was 122.6%,showing excellent electrochemical performance and cycle stability.

参考文献

[1] Xia A,Yu W R,Yi J Y,et al.Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance[J].J Electroanal Chem,2019,839:25-31.
[2] Xia J J,Zhou Y R,Zhang J,et al.Triggering high capacity and superior reversibility of manganese oxides cathode via magnesium modulation for Zn//MnO2 batteries[J].Small,2023,19(27):2301906.
[3] Zhang Y,Sun D,Wang Y X,et al.Facile electrochemically induced vacancy modulation of NiCo2O4 cathode toward high-performance aqueous Zn-based battery[J].Chem Eng,2023,453:139736.
[4] Liu W F,Liu P G,Hao R,et al.One-dimensional MnO2 nanowires space-confined in hollow mesoporous carbon nanotubes for enhanced Zn2+ storage performance[J].ChemElectroChem,2020,7(5):1166-1171.
[5] Huang L X,Luo X F,Chen C,et al.A high specific capacity aqueous zinc-manganese battery with a ε-MnO2 cathode[J].Ionics,2021,27(9):3933-3941.
[6] Jian X,He M,Chen L,et al.Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage[J].Electrochim,2019,318:820-827.
[7] Pan Q,Dong R,Lv H Z,et al.Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries[J].Chem Eng,2021,419:129491.
[8] Li Z X,Liu T T,Meng R J,et al.Insights into the structure stability of Prussian blue for aqueous zinc ion batteries[J].Energy Environ Mater,2021,4(1):111-116.
[9] Xu C J,Li B H,Du H D,et al.Energetic zinc ion chemistry:the rechargeable zinc ion battery[J].Angew,2012,124(4):957-959.
[10] Chu Y T,Guo L Y,Xi B J,et al.Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage[J].Adv Mater,2018,30(6):1704244.
[11] Wei Z,Wang W C,Li W L,et al.Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance[J].Angew,2021,60(15):8236-8242.
[12] Fu Y S,Gao X Y,Zha D S,et al.Yolk-shell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors[J].Mater,2018,6(4):1601-1611.
[13] Fang G Z,Zhu C Y,Chen M H,et al.Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery[J].Adv Funct,2019,29(15):1808375.
[14] Gao X,Wu H W,Li W J,et al.H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery[J].Small,2020,16(5):1905842.
[15] Gangwar D,Rath C.Spin dynamics of hydrothermally synthesized δ-MnO2 nanowhiskers[J].Phys Chem Chem Phys,2020,22(25):14236-14245.
[16] Chen X J,Li W,Zeng Z P,et al.Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell[J].Chem Eng,2021,405:126969.
[17] Liu Y,Chen W,Su J,et al.Inhibition of phase transition from δ-MnO2 to α-MnO2 by Mo-doped and the application of Mo-doped MnO2 in aqueous zinc-ion batteries[J].Phys Chem Chem Phys,2023,25(44):30663-30669.
[18] Shang Y,Kundu D.Aqueous Zn-ion batteries:cathode materials and analysis[J].Current Opinion in Electrochemistry,2022,33:100954.
[19] Rajabi R,Sun S,Billings A,et al.Insights into chemical and electrochemical interactions between Zn anode and electrolytes in aqueous Zn-ion batteries[J].Journal of the Electrochemical Society,2022,169(11):110536.
[20] Kamenskii M A,Popov A Y,Eliseeva S N,et al.The effect of the synthesis method of the layered manganese dioxide on the properties of cathode materials for aqueous zinc-ion batteries[J].Russian Journal of Electrochemistry,2023,59(12):1092-1101.
Options
文章导航

/