石油基合成弹性体发展迅速但存在不可持续的问题,且日益受到节能减排的压力,因此发展生物基弹性体势在必行。采用生物基蓖麻油为主要原料制备蓖麻油基聚氨酯弹性体,并运用傅里叶红外光谱仪、差示扫描量热仪、万能力学试验机、邵氏硬度仪等表征手段对其结构及热行为、力学性能、弹性等性能进行测试分析。结果表明:所制蓖麻油基聚氨酯弹性体具有优异的力学性能、耐水解等性能,并具有一定的自修复性能。所制备的蓖麻油基聚氨酯弹性体的吸水率约为0.64%;在降解测试结果显示,100℃下,pH为14的情况下降解率2.42%;自修测试结果显示,在100℃时自修复的蓖麻油制备的弹性体修复率达64.01%。因此,石油基多元醇有希望被蓖麻油替代或者部分被替代制备高性能聚氨酯弹性体。
Petroleum-based synthetic elastomers are developing rapidly but there are unsustainable issues and are increasingly subject to the pressure of energy conservation and emission reduction.Therefore,the development of bio-based elastomers is imperative.This study used bio-based castor oil as the primary raw material to prepare castor oil-based polyurethane elastomers.Characterization techniques such as Fourier-transform infrared spectroscopy (FT-IR),differential scanning calorimetry (DSC),universal mechanical testing machine,and Shore hardness tester were employed to analyze and test the structure,thermal behavior,mechanical properties,and elasticity of the elastomers.The results indicated that the prepared castor oil-based polyurethane elastomers exhibited excellent mechanical properties,resistance to hydrolysis,and a certain degree of self-healing capabilities.The water absorption rate of castor oil-based polyurethane elastomer was approximately 0.64%.Degradation tests showed that at 100℃ with a pH of 14,the degradation rate was 2.42%.Self-healing tests revealed that the elastomers prepared with castor oil had a healing efficiency of 64.01% at 100℃.Thus,the petroleum-based polyols used have the potential to be replaced,or partially replaced,by castor oil to prepare high-performance polyurethane elastomers.
[1] Lu T,Ma C,Wang T.Mechanics of dielectric elastomer structures:a review[J].Extreme Mechanics Letters,2020,38:100752.
[2] Tang S,Li J,Wang R,et al.Current trends in bio-based elastomer materials[J].SusMat,2022,2(1):2-33.
[3] Gupta U,Qin L,Wang Y,et al.Soft robots based on dielectric elastomer actuators:a review[J].Smart Materials and Structures,2019,28(10):103002.
[4] Shaik Mohammed Rafi,Alam Manawwer,Alandis Naser M,et al.Development of castor oil based poly(urethane-esteramide)/TiO2 nanocomposites as anticorrosive and antimicrobial coatings[J].Journal of Nanomaterials,2015,16(1):176.
[5] Zhang Y,Liu B,Huang K,et al.Eco-friendly castor oil-based delivery system with sustained pesticide release and enhanced retention[J].ACS Applied Materials & Interfaces,2020,12(33):37607-37618.
[6] Paraskar P M,Prabhudesai M S,Hatkar V M,et al.Vegetable oil based polyurethane coatings-a sustainable approach:a review[J].Progress in Organic Coatings,2021,156:106267.
[7] 袁建安,苗志军,吴力佳.蓖麻油基多元醇聚氨酯弹性体制备及其性能研究[J].橡塑资源利用,2020(1):1-6.
[8] 黄冬雪,饶伟瀚,魏永梅,等.蓖麻油基聚醚型聚氨酯弹性体的制备与工艺研究[J].现代化工,2020,40(2):191-195.
[9] 刘菁.蓖麻油作交联剂的聚氨酯弹性体的合成及性能[J].山西化工,2012,32(6):12-15.
[10] Oprea S.Synthesis and properties of polyurethane elastomers with castor oil as crosslinker[J].Journal of the American Oil Chemists' Society,2010,87:313-320.
[11] Babar S,Ebenezer K,Mishra D,et al.Synthesis of castor oil-based glycidyl carbamate polyurethane elastomer and its effect on toughening of polyoxymethylene[J].Journal of Materials Science,2023,58:7209-7226.
[12] Rabelo Aparício R,Machado dos Santos G,Siqueira Magalhíes Rebelo V,et al.Performance of castor oil polyurethane resin in composite with the piassava fibers residue from the Amazon[J].Scientific Reports,2024,14(1):6679.
[13] Li J,Zhang H,Hong C,et al.Realization of customizable performance castor oil-based waterborne polyurethane antiseptic coatings via arbutin[J].Industrial Crops and Products,2024,212:118315.
[14] 王秀君.玻璃化转变温度对分子量的依赖性[J].塑料科技,1979(4):28-29.
[15] 卢新亚,姜炳政.高聚物玻璃化转变温度和分子参数的关系Ⅱ.分子量对玻璃化转变温度的影响[J].高分子学报,1990(5):532-537.
[16] 陈娇.受限态高分子的玻璃化转变及链构象的研究[D].南京:南京大学,2015.
[17] 刘听.聚己内酯型聚氨酯弹性体的合成改性及其性能研究[D].杭州:浙江工业大学,2015.
[18] Prisacariu C,Scortanu E,Agapie B,et al.Inelastic response of copolyurethane elastomers with varying soft segment molecular weights and preparation procedure[J].Polymer International,2013,62(11):1600-1607.
[19] Nurhamiyah Y,Irvine G,Themistou E,et al.Novel biobased polyamide thermoplastic elastomer with medium hardness[J].Macromolecular Chemistry and Physics,2021,222(21):2100218.
[20] Vu V P,Kim S H,Mai V D,et al.Bio-based conductive polyurethane composites derived from renewable castor oil with enhanced self-healing ability for flexible supercapacitors[J].Journal of Materials Science & Technology,2024,188:44-61.
[21] Zhang J,Yao M,Chen J,et al.Synthesis and properties of polyurethane elastomers based on renewable castor oil polyols[J].Journal of Applied Polymer Science,2019,136(14):47309.
[22] 吴振强.耐水抗菌型蓖麻油基水性聚氨酯的制备及性能研究[D].西安:陕西科技大学,2023.
[23] Morales-González M,Navas-Gómez K,Diaz L E,et al.Incorporation of chitosan in polyurethanes based on modified castor oil for cardiovascular applications[J].Polymers,2023,15(18):3733.
[24] 周寒枝,刘文明,张宁.催化碱解蓖麻油制备癸二酸的研究[J].南昌大学学报:理科版,2000,24(2):4.
[25] 李慧.可降解聚氨酯弹性体的复合技术及其降解行为研究[D].青岛:青岛科技大学,2022.