Anode-free lithium metal batteries are expected to become the next generation of energy storage devices due to their ultra-high energy density,excellent safety,and good economy.However,a series of problems such as high interface contact resistance,lithium dendrites,and dead lithium formation lead to a shortened cycle life.In recent years,researchers have conducted some research works on optimizing electrolytes and deposition substrates to extend battery life.This article elaborated on the current development status and existing problems of anode-free lithium metal batteries,focusing on the research progress of electrolyte optimization,SEI interface modification,current collector modification and other strategies to improve the cycling stability of batteries.Finally,the future opportunities and possible development directions of anode-free lithium metal batteries were analyzed and discussed.
[1] Wu F,Maier J,Yu Y.Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J].Chemical Society Reviews,2020,49(5):1569-1614.
[2] Liu J,Bao Z,Cui Y,et al.Pathways for practical high-energy long-cycling lithium metal batteries[J].Nature Energy,2019,4(3):180-186.
[3] Huang W Z,Zhao C Z,Wu P,et al.Anode-free solid-state lithium batteries:a review[J].Advanced Energy Materials,2022,12(26):2201044.
[4] Zhai P,Wei Y,Xiao J,et al.In Situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes[J].Advanced Energy Materials,2020,10(8):1903339.
[5] Yasin G,Arif M,Mehtab T,et al.Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries[J].Energy Storage Materials,2020,25:644-678.
[6] Zhou H,Yu S,Liu H,et al.Protective coatings for lithium metal anodes:recent progress and future perspectives[J].Journal of Power Sources,2020,450:227632.
[7] Zhai P,Liu L,Gu X,et al.Interface engineering for lithium metal anodes in liquid electrolyte[J].Advanced Energy Materials,2020,10(34):2001257.
[8] Wang M J,Carmona E,Gupta A,et al.Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating[J].Nature Communications,2020,11(1):5201.
[9] Ren Z,Li J,Gong Y,et al.Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery[J].Energy Storage Materials,2022,51:130-138.
[10] Lee Y-G,Fujiki S,Jung C,et al.High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J].Nature Energy,2020,5(4):299-308.
[11] Mao H Y,Zhang Y T,Wang Z Z,et al.Sulfur-rich MoS3 cathode for high-performance room-temperature liquid and solid-state lithium metal batteries[J].Solid State Ionics,2024,406:116459.
[12] Feng W,Zhao Y,Xia Y.Solid interfaces for the garnet electrolytes[J].Advanced Materials,2024,36(15):2306111.
[13] Wang S,Chiu H C,Demopoulos G P.Tetragonal phase-free crystallization of highly conductive nanoscale cubic garnet (Li6.1Al0.3La3Zr2O12) for all-solid-state lithium-metal batteries[J].Journal of Power Sources,2024,595:234061.
[14] Chen Y,Qian J,Li L,et al.Advances in inorganic solid-state electrolyte/Li interface[J].Chemistry-A European Journal,2024,30(5):202303454.
[15] Tang S,Chen G,Ren F,et al.Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes[J].Journal of Materials Chemistry A,2021,9(6):3576-3583.
[16] Qin K,Nguyen J V,Yang Z,et al.Anion modification for stable solid electrolyte interphase in anode-free lithium metal batteries[J].Materials Today Energy,2023,31:101199.
[17] Zhou J,Qin J,Zhan H.Copper current collector:the cornerstones of practical lithium metal and anode-free batteries[J].ChemPhysChem,2024,25:202400007.
[18] 刘泽宇,黄文泽,肖阳,等.全固态无负极锂金属电池纳米化复合集流体构筑[J].物理化学学报,2024,40(3):66-74.
[19] Kwon H,Lee J H,Roh Y,et al.An electron-deficient carbon current collector for anode-free Li-metal batteries[J].Nature Communications,2021,12(1):5537.
[20] Zhao Q,Li J,Chen X,et al.Facile lithiophilic 3D copper current collector for stable Li metal anode[J].Journal of Electronic Materials,2022,51(8):4248-4256.
[21] Huang S,Meng C,Chen H,et al.Self-assembled monolayer regulates lithium nucleation and growth for stable lithium metal anodes[J].Electrochimica Acta,2024,482:143998.
[22] Ku H Y,Chiang C W,Lu Y T,et al.Developing TiO2/polyacrylonitrile nanofibrous functional layer for the negative electrode of “zero-excess” lithium-metal batteries[J].Journal of Power Sources,2024,596:234094.
[23] Kim J Y,Chae O B,Kim G,et al.Long-range uniform deposition of Ag nanoseed on Cu current collector for high-performance lithium metal batteries[J].Small,2024,2307200:1-10.
[24] Qiao Y,Yang H,Chang Z,et al.A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent[J].Nature Energy,2021,6(6):653-662.
[25] Chen L,Chiang C L,Zeng G,et al.Enhancing the cycle-life of initial-anode-free lithium-metal batteries by pre-lithiation in Mn-based Li-rich spinel cathodes[J].Journal of Materials Chemistry A,2023,11(21):11119-11125.
[26] Chen L,Chiang C L,Wu X,et al.Prolonged lifespan of initial-anode-free lithium-metal battery by pre-lithiation in Li-rich Li2Ni0.5Mn1.5O4 spinel cathode[J].Chemical Science,2023,14(8):2183-2191.