综述与专论

水系锌离子电池钒基氧化物正极材料研究进展

  • 刘超群 ,
  • 崔心蕾 ,
  • 王哲禹 ,
  • 白晓波 ,
  • 迟彩霞
展开
  • 绥化学院黑龙江省环境催化与储能材料重点实验室,绥化 152000
刘超群(1991-),男,助教,硕士,研究方向为功能材料制备与应用,E-mail:liuchaoqun1104@163.com。
迟彩霞(1981-),女,教授,博士,研究方向为功能材料制备与应用,E-mail:chicaixia617@163.com。

收稿日期: 2024-04-15

  修回日期: 2024-12-17

  网络出版日期: 2025-05-21

基金资助

黑龙江省省属本科高校基本科研业务费项目(YWK10236210237);黑龙江省自然科学基金(LH2020B016);绥化学院科研创新团队项目(SIT05001);绥化学院大学生创新创业训练项目(shxy202318)

Recent advances on vanadium-based oxide cathode materials for aqueous zinc-ion batteries

  • Liu Chaoqun ,
  • Cui Xinlei ,
  • Wang Zheyu ,
  • Bai Xiaobo ,
  • Chi Caixia
Expand
  • Heilongjiang Province Key Laboratory of Environmental Catalysis and Energy Storage Materials,Suihua University,Suihua 152000

Received date: 2024-04-15

  Revised date: 2024-12-17

  Online published: 2025-05-21

摘要

水系锌离子电池因具有高能量密度、安全和价格低廉等优势而受到广泛关注。正极材料是限制水系锌离子电池发挥优异电化学性能的关键。在正极材料中,钒基氧化物以丰富的电子价态及利于储能的层状结构所带来的高容量和优异的倍率性能而备受关注。但钒基材料较差的动力学和不稳定的晶体结构降低了电极材料的容量性能和循环稳定性。介绍了钒基氧化物正极材料的储能机理,综述了嵌入工程、缺陷工程以及合成复合材料等提高钒基氧化物正极材料电化学性能的方法,并展望了其未来的发展前景。

本文引用格式

刘超群 , 崔心蕾 , 王哲禹 , 白晓波 , 迟彩霞 . 水系锌离子电池钒基氧化物正极材料研究进展[J]. 化工新型材料, 2025 , 53(5) : 55 -60 . DOI: 10.19817/j.cnki.issn1006-3536.2025.05.014

Abstract

Aqueous Zinc-ion batteries(AZIBs)have attracted considerable attentions because of their high energy density,inherent safety and low cost.The cathode material is the key to limit the excellent electrochemical performance of aqueous zinc-ion batteries.Among diverse array of cathode materials,vanadium-based oxides have garnered wide concern on account of unique advantages such as high capacity and excellent rate capability,which can be attributed to their abundant electronic valence state and intrinsic layered structure.However,sluggish kinetics and unstable crystal structure lead to poor capacity and cyclic stability.The energy storage mechanism of vanadium-based oxide cathode materials was introduced.The methods of embedding engineering,defect engineering and composite materials to improve the electrochemical performance of vanadium-based oxide cathode materials were reviewed.Its future development prospects was also discussed.

参考文献

[1] Nie C,Wang G,Wang D,et al.Recent progress on Zn anodes for advanced aqueous zinc-ion batteries[J].Advanced Energy Materials,2023,13(28):2300606.
[2] Li B,Zhang X,Wang T,et al.Interfacial engineering strategy for high-performance Zn metal anodes[J].Nano-Micro Letters,2021,14:1-31.
[3] Zhou T,Zhu L,Xie L,et al.Cathode materials for aqueous zinc-ion batteries:a mini review[J].Journal of Colloid and Interface Science,2022,605:828-850.
[4] Wang X,Zhang Z,Xi B,et al.Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries[J].ACS Nano,2021,15(6):9244-9272.
[5] Kundu D,Adams B D,Duffort V,et al.A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J].Nature Energy,2016,1(10):1-8.
[6] Yang J,Yin B,Sun Y,et al.Zinc anode for mild aqueous zinc-ion batteries:challenges,strategies,and perspectives[J].Nano-Micro Letters,2022,14:1-47.
[7] Song M,Tan H,Chao D,et al.Recent advances in Zn-ion batteries[J].Advanced Functional Materials,2018,28(41):1802564.
[8] Liu Y,Wu X.Hydrogen and sodium ions Co-intercalated vanadium dioxide electrode materials with enhanced zinc ion sto-rage capacity[J].Nano Energy,2021,86:106124.
[9] Ding J,Gao H,Zhao K,et al.In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range[J].Journal of Power Sources,2021,487:229369.
[10] Lu Y,Zhu T,Van Den Bergh W,et al.A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers[J].Angewandte Chemie International Edition,2020,59(39):17004-17011.
[11] Jia X,Liu C,Neale Z G,et al.Active materials for aqueous zinc ion batteries:synthesis,crystal structure,morphology,and electrochemistry[J].Chemical Reviews,2020,120(15):7795-7866.
[12] Mao F,Li Y,Zou Z,et al.Zn2+ storage performance and structural change of orthorhombic V2O5 nanowires as the cathode material for rechargeable aqueous zinc-ion batteries[J].Electrochimica Acta,2021,397:139255.
[13] Volkov A I,Sharlaev A S,Ya Berezina O,et al.Electrospun V2O5 nanofibers as high-capacity cathode materials for zinc-ion batteries[J].Materials Letters,2022,308:131212.
[14] Chen M,Zhang S C,Zou Z G,et al.Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries[J].Rare Metals,2023,42(9):2868-2905.
[15] Islam S,Alfaruqi M H,Putro D Y,et al.K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries[J].Journal of Materials Chemistry A,2019,7(35):20335-20347.
[16] Xu Y,Bai M X,He Z H,et al.Solvothermal synthesis of sea urchin-like NaXV2O5 structure for ultra-high stability aqueous zinc ion batteries[J].Journal of Electroanalytical Chemistry,2023,944:117665.
[17] He P,Zhang G,Liao X,et al.Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batte-ries[J].Advanced Energy Materials,2018,8(10):1702463.
[18] Su G,Chen S,Dong H,et al.Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries[J].Nanoscale,2021,13(4):2399-2407.
[19] Xu J,Zhang Y,Liu C,et al.Al3+ introduction hydrated vanadium oxide induced high performance for aqueous zinc-ion batteries[J].Small,2022,18(47):2204180.
[20] Liu Y,Lu C,Yang Y,et al.Multiple cations nanoconfinement in ultrathin V2O5 nanosheets enables ultrafast ion diffusion kinetics toward high-performance zinc ion battery[J].Advanced Materials,2024,36(18):2312982.
[21] Feng Z,Zhang Y,Sun J,et al.Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries[J].Chemical Engineering Journal,2022,433:133795.
[22] Sun Q,Cheng H,Yuan Y,et al.Uncovering the fundamental role of interlayer water in charge storage for bilayered V2O5·nH2O xerogel cathode materials[J].Advanced Energy Materials,2022,13(3):2202515.
[23] Geng H,Cheng M,Wang B,et al.Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries[J].Advanced Functional Materials,2019,30(6):1907684.
[24] Kundu D,Hosseini Vajargah S,Wan L,et al.Aqueous vs.nonaqueous Zn-ion batteries:consequences of the desolvation pe-nalty at the interface[J].Energy & Environmental Science,2018,11(4):881-892.
[25] Guo W,Dun C,Yu C,et al.Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage[J].Nature Communications,2022,13(1):1409.
[26] Cui F,Wang D,Hu F,et al.Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery[J].Energy Storage Materials,2022,44:197-205.
[27] Ye J J,Li P H,Zhang H R,et al.Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries[J].Advanced Functional Materials,2023,33(46):2305659.
[28] Zong Q,Zhuang Y,Liu C,et al.Dual effects of metal and organic ions Co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries[J].Advanced Energy Materials,2023,13(31):2301480.
[29] Liu C,Li R,Liu W,et al.Chitosan-assisted fabrication of a network C@V2O5 cathode for high-performance Zn-ion batteries[J].ACS Applied Materials & Interfaces,2021,13(31):37194-37200.
[30] Li C,Li M,Xu H,et al.Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries[J].Journal of Colloid and Interface Science,2022,623:277-284.
[31] Yin C,Wang H,Pan C,et al.Constructing MOF-derived V2O5 as advanced cathodes for aqueous zinc ion batteries[J].Journal of Energy Storage,2023,73:109045.
[32] Gong L,Zhang Y,Li Z.V-MOF@graphene derived two-dimensional hierarchical V2O5@graphene as high-performance cathode for aqueous zinc-ion batteries[J].Materials Today Chemistry,2022,23:100731.
[33] Hu T,Feng Z,Zhang Y,et al.“Double Guarantee Mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries[J].Inorganic Chemistry Frontiers,2021,8(1):79-89.
[34] Chen X,Zhang H,Liu J H,et al.Vanadium-based cathodes for aqueous zinc-ion batteries:mechanism,design strategies and challenges[J].Energy Storage Materials,2022,50:21-46.
[35] Ding J,Du Z,Gu L,et al.Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide[J].Advanced Materials,2018,30(26):1800762.
[36] Cao Z,Wang L,Zhang H,et al.Localized ostwald ripening guided dissolution/regrowth to ancient chinese coin-shaped VO2 nanoplates with enhanced mass transfer for zinc ion sto-rage[J].Advanced Functional Materials,2020,30(25):2000472.
[37] Yang M,Ma D,Mi H,et al.A unique morphology and interface dual-engineering strategy enables the holey C@VO2 cathode with enhanced storage kinetics for aqueous Zn-ion batteries[J].Journal of Materials Chemistry A,2021,9(13):8792-8804.
[38] Lv T T,Luo X,Yuan G Q,et al.Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries[J].Chemical Engineering Journal,2022,428:131211.
[39] Li G,Sun L,Zhang S,et al.Developing cathode materials for aqueous zinc ion batteries:challenges and practical prospects[J].Advanced Functional Materials,2024,34(5):2301291.
[40] Liu D,Zhang Q,Ding S,et al.Microdefects evolution and electrochemical performance modulation of Mn doped VO2(B) nanorods[J].Journal of Alloys and Compounds,2022,911:164975.
Options
文章导航

/