[1] Nie C,Wang G,Wang D,et al.Recent progress on Zn anodes for advanced aqueous zinc-ion batteries[J].Advanced Energy Materials,2023,13(28):2300606.
[2] Li B,Zhang X,Wang T,et al.Interfacial engineering strategy for high-performance Zn metal anodes[J].Nano-Micro Letters,2021,14:1-31.
[3] Zhou T,Zhu L,Xie L,et al.Cathode materials for aqueous zinc-ion batteries:a mini review[J].Journal of Colloid and Interface Science,2022,605:828-850.
[4] Wang X,Zhang Z,Xi B,et al.Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries[J].ACS Nano,2021,15(6):9244-9272.
[5] Kundu D,Adams B D,Duffort V,et al.A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J].Nature Energy,2016,1(10):1-8.
[6] Yang J,Yin B,Sun Y,et al.Zinc anode for mild aqueous zinc-ion batteries:challenges,strategies,and perspectives[J].Nano-Micro Letters,2022,14:1-47.
[7] Song M,Tan H,Chao D,et al.Recent advances in Zn-ion batteries[J].Advanced Functional Materials,2018,28(41):1802564.
[8] Liu Y,Wu X.Hydrogen and sodium ions Co-intercalated vanadium dioxide electrode materials with enhanced zinc ion sto-rage capacity[J].Nano Energy,2021,86:106124.
[9] Ding J,Gao H,Zhao K,et al.In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range[J].Journal of Power Sources,2021,487:229369.
[10] Lu Y,Zhu T,Van Den Bergh W,et al.A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers[J].Angewandte Chemie International Edition,2020,59(39):17004-17011.
[11] Jia X,Liu C,Neale Z G,et al.Active materials for aqueous zinc ion batteries:synthesis,crystal structure,morphology,and electrochemistry[J].Chemical Reviews,2020,120(15):7795-7866.
[12] Mao F,Li Y,Zou Z,et al.Zn2+ storage performance and structural change of orthorhombic V2O5 nanowires as the cathode material for rechargeable aqueous zinc-ion batteries[J].Electrochimica Acta,2021,397:139255.
[13] Volkov A I,Sharlaev A S,Ya Berezina O,et al.Electrospun V2O5 nanofibers as high-capacity cathode materials for zinc-ion batteries[J].Materials Letters,2022,308:131212.
[14] Chen M,Zhang S C,Zou Z G,et al.Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries[J].Rare Metals,2023,42(9):2868-2905.
[15] Islam S,Alfaruqi M H,Putro D Y,et al.K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries[J].Journal of Materials Chemistry A,2019,7(35):20335-20347.
[16] Xu Y,Bai M X,He Z H,et al.Solvothermal synthesis of sea urchin-like NaXV2O5 structure for ultra-high stability aqueous zinc ion batteries[J].Journal of Electroanalytical Chemistry,2023,944:117665.
[17] He P,Zhang G,Liao X,et al.Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batte-ries[J].Advanced Energy Materials,2018,8(10):1702463.
[18] Su G,Chen S,Dong H,et al.Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries[J].Nanoscale,2021,13(4):2399-2407.
[19] Xu J,Zhang Y,Liu C,et al.Al3+ introduction hydrated vanadium oxide induced high performance for aqueous zinc-ion batteries[J].Small,2022,18(47):2204180.
[20] Liu Y,Lu C,Yang Y,et al.Multiple cations nanoconfinement in ultrathin V2O5 nanosheets enables ultrafast ion diffusion kinetics toward high-performance zinc ion battery[J].Advanced Materials,2024,36(18):2312982.
[21] Feng Z,Zhang Y,Sun J,et al.Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries[J].Chemical Engineering Journal,2022,433:133795.
[22] Sun Q,Cheng H,Yuan Y,et al.Uncovering the fundamental role of interlayer water in charge storage for bilayered V2O5·nH2O xerogel cathode materials[J].Advanced Energy Materials,2022,13(3):2202515.
[23] Geng H,Cheng M,Wang B,et al.Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries[J].Advanced Functional Materials,2019,30(6):1907684.
[24] Kundu D,Hosseini Vajargah S,Wan L,et al.Aqueous vs.nonaqueous Zn-ion batteries:consequences of the desolvation pe-nalty at the interface[J].Energy & Environmental Science,2018,11(4):881-892.
[25] Guo W,Dun C,Yu C,et al.Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage[J].Nature Communications,2022,13(1):1409.
[26] Cui F,Wang D,Hu F,et al.Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery[J].Energy Storage Materials,2022,44:197-205.
[27] Ye J J,Li P H,Zhang H R,et al.Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries[J].Advanced Functional Materials,2023,33(46):2305659.
[28] Zong Q,Zhuang Y,Liu C,et al.Dual effects of metal and organic ions Co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries[J].Advanced Energy Materials,2023,13(31):2301480.
[29] Liu C,Li R,Liu W,et al.Chitosan-assisted fabrication of a network C@V2O5 cathode for high-performance Zn-ion batteries[J].ACS Applied Materials & Interfaces,2021,13(31):37194-37200.
[30] Li C,Li M,Xu H,et al.Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries[J].Journal of Colloid and Interface Science,2022,623:277-284.
[31] Yin C,Wang H,Pan C,et al.Constructing MOF-derived V2O5 as advanced cathodes for aqueous zinc ion batteries[J].Journal of Energy Storage,2023,73:109045.
[32] Gong L,Zhang Y,Li Z.V-MOF@graphene derived two-dimensional hierarchical V2O5@graphene as high-performance cathode for aqueous zinc-ion batteries[J].Materials Today Chemistry,2022,23:100731.
[33] Hu T,Feng Z,Zhang Y,et al.“Double Guarantee Mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries[J].Inorganic Chemistry Frontiers,2021,8(1):79-89.
[34] Chen X,Zhang H,Liu J H,et al.Vanadium-based cathodes for aqueous zinc-ion batteries:mechanism,design strategies and challenges[J].Energy Storage Materials,2022,50:21-46.
[35] Ding J,Du Z,Gu L,et al.Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide[J].Advanced Materials,2018,30(26):1800762.
[36] Cao Z,Wang L,Zhang H,et al.Localized ostwald ripening guided dissolution/regrowth to ancient chinese coin-shaped VO2 nanoplates with enhanced mass transfer for zinc ion sto-rage[J].Advanced Functional Materials,2020,30(25):2000472.
[37] Yang M,Ma D,Mi H,et al.A unique morphology and interface dual-engineering strategy enables the holey C@VO2 cathode with enhanced storage kinetics for aqueous Zn-ion batteries[J].Journal of Materials Chemistry A,2021,9(13):8792-8804.
[38] Lv T T,Luo X,Yuan G Q,et al.Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries[J].Chemical Engineering Journal,2022,428:131211.
[39] Li G,Sun L,Zhang S,et al.Developing cathode materials for aqueous zinc ion batteries:challenges and practical prospects[J].Advanced Functional Materials,2024,34(5):2301291.
[40] Liu D,Zhang Q,Ding S,et al.Microdefects evolution and electrochemical performance modulation of Mn doped VO2(B) nanorods[J].Journal of Alloys and Compounds,2022,911:164975.