综述与专论

导热增强型相变材料研究进展

  • 钟金豹 ,
  • 范浩熙 ,
  • 方桂花 ,
  • 王永鹏 ,
  • 孟祥一 ,
  • 张剑
展开
  • 内蒙古科技大学机械工程学院相变储能实验室,包头 014010
钟金豹(1980-),男,博士研究生,副教授,主要从事陶瓷刀具材料的研制及切削性能研究、机械液压系统故障诊断以及相变储能材料的研发与利用,E-mail:nkdzjb@126.com。
范浩熙(1997-),男,硕士,从事相变储能材料的研发,E-mail:3360391621@qq.com。

收稿日期: 2024-04-15

  修回日期: 2024-11-19

  网络出版日期: 2025-05-21

基金资助

内蒙古自治区自然科学基金项目(2018MS05042)

Research progress in thermal conductivity enhanced phase change materials

  • Zhong Jinbao ,
  • Fan Haoxi ,
  • Fang Guihua ,
  • Wang Yongpeng ,
  • Meng Xiangyi ,
  • Zhang Jian
Expand
  • Phase Change Energy Storage Laboratory,School of Mechanical Engineering, Inner Mongolia University of Science and Technology,Baotou 014010

Received date: 2024-04-15

  Revised date: 2024-11-19

  Online published: 2025-05-21

摘要

首先对相变材料蓄能原理以及导热过程进行简要介绍,然后对复合相变材料导热能力的增强方式进行概述,并介绍了近年来导热增强型复合相变材料的制备方法和实验结果。进一步分析了导热增强型复合相变材料发展中存在的问题且对相变材料的发展前景进行了展望。

本文引用格式

钟金豹 , 范浩熙 , 方桂花 , 王永鹏 , 孟祥一 , 张剑 . 导热增强型相变材料研究进展[J]. 化工新型材料, 2025 , 53(5) : 24 -29 . DOI: 10.19817/j.cnki.issn1006-3536.2025.05.027

Abstract

Firstly,the energy storage principle and thermal conductivity process of phase change materials (PCMs) were briefly introduced,then the enhancement method of thermal conductivity of composite PCMs was summarized,and the preparation methods and experimental results of thermally conductive enhanced composite PCMs in recent years were introduced.The problems existing in the development of thermally conductive enhanced composite phase change materials were further analyzed,and the development prospects of PCMSs were discussed.

参考文献

[1] 朱楚侨.导热增强型复合相变储能材料制备及性能研究[D].南京:南京大学,2020.
[2] 陈颖,姜庆辉,辛集武,等.相变储能材料及其应用研究进展[J].材料工程,2019,47(7):1-10.
[3] 饶中浩,汪双凤,张艳来,等.相变材料热物理性质的分子动力学模拟[J].物理学报,2013,62(5):331-336.
[4] 孙小琴.相变材料蓄放热机理及其基站冷却的能效研究[D].长沙:湖南大学,2014.
[5] Wu S,Yan T,Kuai Z,et al.Thermal conductivity enhancement on phase change materials for thermal energy storage:a review[J].Energy Storage Materials,2019,25:251-295.
[6] 王程遥,张魏,张涛,等.相变微胶囊材料导热增强研究进展[J].精细化工,2023,41(6):1195-1210.
[7] 韩涛,马彦花,方嘉宾,等.管壳式太阳能相变储热器传热特性的数值研究[J].太阳能学报,2023,44(3):525-532.
[8] Liu Zhan,Liu Zihui,Guo Junfei,et al.Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery[J].Applied Energy,2022,321:119300.
[9] 方桂花,刘颖杰,王峰,等.基于螺旋盘管蓄热装置放热实验研究[J].太阳能学报,2022,43(12):166-171.
[10] Ge Ruihuan,Li Qi,Li Chuan,et al.Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system[J].Renewable Energy,2022,187:829-843.
[11] 王静静,徐小亮,梁凯彦,等.多孔基定形复合相变材料传热性能提升研究进展[J].工程科学学报,2020,42(1):26-38.
[12] 徐众,侯静,万书权,等.金属泡沫/石蜡复合相变材料的制备及热性能研究[J].储能科学与技术,2020,9(1):109-116.
[13] Wang G,Wei G,Xu C,et al.Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals[J].Applied Thermal Engineering,2019,147:464-472.
[14] Jesumathy S P,Udayakumar M,Suresh S,et al.An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit[J].Journal of the Taiwan Institute of Chemical Engineers,2014,45(4):1298-1306.
[15] 朱孟帅,张华,闫勤学,等.泡沫金属填充率对相变材料强化换热的机理研究[J].制冷学报,2021,42(5):127-133.
[16] 祁先进,王华,王胜林,等.金属基与熔融盐复合蓄热材料的制备与性能研究[J].工业加热,2005,34(1):8-10,18.
[17] Xiao X,Zhang P,Li M.Preparation and thermal characterization of paraffin/metal foam composite phase change material[J].Applied Energy,2013,112:1357-1366.
[18] 万倩,何露茜,何正斌,等.泡沫铁/石蜡复合相变储能材料放热过程及其热量传递规律[J].储能科学与技术,2020,9(4):1098-1104.
[19] 倪鹏,曹世豪.金属蜂窝/石蜡复合相变材料融化储热性能研究[J].储能科学与技术,2024,13(2):425-435.
[20] Tang Jia,Yang Ming,Dong Wenjun,et al.Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J].RSC Advances,2016,6(46):40106-40114.
[21] Atinafu G D,Dong W,Hou C,et al.A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials[J].Materials Today Energy,2019,12:239-249.
[22] Gökhan H,Ahmet S,Yunus Ö,et al.Utilization of waste apricot kernel shell derived-activated carbon as carrier framework for effective shape-stabilization and thermal conductivity enhancement of organic phase change materials used for thermal energy storage[J].Powder Technology,2022,401:117291.
[23] Prabhat K,Shijo T,Sobhan C B,et al.Activated carbon foam composite derived from PEG400/Terminalia Catappa as form stable PCM for sub-zero cold energy storage[J].Journal of Cleaner Production,2024,434:139993.
[24] Vitaly Z,Dmytro I,Yana H,et al.Experimental study of phase transition heat of composite thermal energy storage materials paraffin wax/expanded graphite[J].Journal of Energy Storage,2024,77:110174.
[25] 林志强,赵钟兴,宋金亮,等.低熔点氯盐/膨胀石墨复合材料的制备及传蓄热性能研究[J].功能材料,2023,54(10):10180-10185.
[26] 任学明,沈鸿烈,杨艳.膨胀石墨/石蜡复合相变材料的碳纳米管掺杂改性研究[J].功能材料,2019,50(6):6008-6012.
[27] Zhang L,Zhou K,Wei Q,et al.Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J].Applied Energy,2019,233-234(1):208-219.
[28] Hu N,Li H,Wei Q,et al.Continuous diamond-carbon nanotube foams as rapid heat conduction channels in composite phase change materials based on the stable hierarchical structure[J].Composites Part B-Engineering,2020,200:108293.
[29] Ye W,Wei Q,Zhang L,et al.Macroporous diamond foam:a novel design of 3D interconnected heat conduction network for thermal management[J].Materials Design,2018,156:32-41.
[30] Bafakeeh Omar T,Shiba Mohamed S,Elshalakany Abour,et al.Effect of dispersion hybrid structural properties of MWCNTs and Al2O3 on microstructural and thermal characteristics of PCMs for thermal energy storage in solar water desalination[J].Journal of Thermal Analysis and Calorimetry,2023,148(10):4087-4104.
[31] Fikri A M,Suraparaju K S,Samykano M,et al.Enhanced thermal properties of phase change materials through surfactant-functionalized graphene nanoplatelets for sustainable energy storage[J].Energies,2023,16(22):6227668.
[32] Gökhan H,Ahmet S,Osman G,et al.Thermal energy storage characteristics of polyacrylic acid/dodecanol/carbon nanofiber composites as thermal conductive shape-stabilized composite phase change materials[J].International Journal of Energy Research,2022,46(14):20873-20885.
[33] 刘子路,张宇昂,唐炳涛,等.铜纳米粒子导热增强固-液相变储能材料的性能[J].精细化工,2022,39(12):2409-2416.
[34] 华维三,章学来,罗孝学,等.纳米金属/石蜡复合相变蓄热材料的实验研究[J].太阳能学报,2017,38(6):1723-1728.
[35] Zhang Chuge,Hu Xiaowu,Xiao Shikun,et al.Enhanced thermal performance of phase-change material supported by nano-Ag coated eggplant-based biological porous carbon[J].Journal of Energy Storage,2021,43:103174.
[36] Cheng Jianghui,Chen Guoyuan,Li Sensen,et al.High-thermal-conductivity phase-change composites prepared by in situ synthesis of graphite nanoplatelets/Cu networks for effective thermal management[J].Journal of Energy Storage,2021,41:102952.
[37] Yin Shaowu,Lu Ming,Liu Chuanping,et al.Fabrication and thermal properties of capric-stearic acid eutectic/nano-SiO2 phase change material with expanded graphite and CuO for thermal energy storage[J].Journal of Energy Storage,2024,77:110025.
[38] Sarafoji P,Mariappan V,Anish R,et al.Characterization and thermal properties of Lauryl alcohol-capric acid with CuO and TiO2 nanoparticles as phase change material for cold storage system[J].Materials Letters,2022,316:132052.
[39] Deng Y,Li J,Qian T,et al.Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage[J].Chemical Engineering Journal,2016,295:427-435.
[40] Yong D.Effect of Ag nanowires on crystallization behavior of polyethylene glycol/expanded vermiculite composite phase change material[J].Journal of Energy Storage,2021,34:102223.
[41] Son W H,Heu S C,Lee S H,et al.Enhanced thermal performance of lithium nitrate phase change material by porous copper oxide nanowires integrated on folded meshes for high temperature heat storage[J].Chemical Engineering Journal,2020,391:123613-123613.
[42] Chen Zihe,Zhu Ruijie,Sheng Nan,et al.Synchronously improved thermal conductivity and anti-leakage performance for phase change composite by SiC nanowires modified wood carbon[J].Journal of Energy Storage,2022,47:103567.
[43] Kalnæs E S,Jelle P B.Phase change materials and products for building applications:a state-of-the-art review and future research opportunities[J].Energy Buildings,2015,94:150-176.
[44] Liu Chenzhen,Cao Huanxin,Yang Peng,et al.Fabrication and characterization of nano-additives modified microencapsulated phase change materials with high thermal conductivity for thermal energy storage[J].Solar Energy Materials and Solar Cells,2023,263:112594.
[45] 吴学红,王凯,王强伟,等.氧化石墨烯复合相变微胶囊制备及传热特性研究[J].工程热物理学报,2023,44(12):3414-3419.
[46] Gu M,Huang Y,Bao K,et al.Efficient preparation of GO-modified regular spherical SiO2@CaCl2·6H2O phase change microcapsules for enhanced thermal energy storage[J].Journal of Energy Storage,2024,83:110727.
[47] Yan Dongmao,Ming Weixing,Liu Song,et al.Polyethylene glycol(PEG)/silicon dioxide grafted aminopropyl group and carboxylic multi-walled carbon nanotubes (SAM) composite as phase change material for light-to-heat energy conversion and storage[J].Journal of Energy Storage,2021,36:102428.
[48] Zhao Kuan,Guo Zhixiong,Wang Jifen,et al.Construction of phase change n-octadecane microencapsulated in carbon nanotubes-modified polymer for thermal management applications of finned heat sinks[J].Chemical Engineering Journal,2023,471:144723.
[49] Zhao Kuan,Guo Zhixiong,Wang Jifen,et al.Phase change n-Octadecane microencapsulated in titanium dioxide nanoparticle-doped polymer for photothermal conversion and photocatalysis[J].Solar Energy,2023,254(1):73-87.
[50] Zhang Xi,Zhang Yuhua,Li Hongqiang,et al.Enhanced thermal conductivity and photothermal effect of microencapsulated n-octadecane phase change material with calcium carbonate-polydopamine hierarchical shell for solar energy storage[J].Solar Energy Materials and Solar Cells,2023,256:112336.
Options
文章导航

/