综述与专论

基于取向结构石墨烯的高导热界面材料研究进展

  • 葛舟 ,
  • 石煜锋 ,
  • 吕晓静 ,
  • 朱俊德 ,
  • 张诚 ,
  • 葛鹰
展开
  • 1.常州贺斯特科技股份有限公司,常州 213125;
    2.浙江工业大学化学与工程学院,杭州 310014
葛舟(1983-),男,学士,工程师,主要从事热管理设计研发工作。
吕晓静(1987-),女,副研究员,从事聚合物基复合材料研究,E-mail:doctorlv@zjut.edu.cn。葛鹰(1970-),男,工程师,从事热管理设计研究,E-mail:13901500257@163.com。

收稿日期: 2024-05-06

  修回日期: 2024-12-31

  网络出版日期: 2025-05-21

基金资助

江苏省重点研发计划项目(BE2022104)

Research progress on high thermal conductive interface materials based on oriented structured graphene

  • Ge Zhou ,
  • Shi Yufeng ,
  • Lv Xiaojing ,
  • Zhu Junde ,
  • Zhang Cheng ,
  • Ge Ying
Expand
  • 1. Changzhou Hystar Technology Inc.,Ltd.,Changzhou 213125;
    2. College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310014

Received date: 2024-05-06

  Revised date: 2024-12-31

  Online published: 2025-05-21

摘要

随着电子设备功耗和热量的不断增加,对热管理材料的性能提出了更高的要求。石墨烯作为导热填料,被广泛用于制备导热复合材料。与传统的石墨烯与聚合物直接共混相比,取向结构的石墨烯更有利于获得高导热性能的复合材料。因此,如何在聚合物复合材料中构建取向结构石墨烯以实现高导热性能成为研究的热点。综述了近年来基于取向结构石墨烯的高导热界面材料的制备方法及其应用,并对其今后的研究和未来发展进行了分析与展望。

本文引用格式

葛舟 , 石煜锋 , 吕晓静 , 朱俊德 , 张诚 , 葛鹰 . 基于取向结构石墨烯的高导热界面材料研究进展[J]. 化工新型材料, 2025 , 53(5) : 11 -17 . DOI: 10.19817/j.cnki.issn1006-3536.2025.05.025

Abstract

With the continuous increase in power consumption and heat of electronic devices,it puts forward higher requirements for the performance of thermal management materials.Graphene,as thermal conductive filler,has been widely used to prepare the thermal conductive polymer composites.Compared with the traditional direct blending of graphene with polymer,the graphene with oriented structure is more favorable to achieve polymer composites with high thermal conductivity.Hence,the construction of oriented structured graphene in polymer composites to realize high thermal conductivity has become a research hotspot.In this paper,the preparation methods and applications of high thermal conductive interface materials based on oriented structured graphene in recent years were reviewed.At the end,their future research and development were analyzed and prospected.

参考文献

[1] Yan Q,Alam F E,Gao J,et al.Soft and self-adhesive thermal interface materials based on vertically aligned,covalently bonded graphene nanowalls for efficient microelectronic cooling[J].Advanced Functional Materials,2021,36:2104062.
[2] Yan Q,Dai W,Gao J,et al.Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader[J].ACS Nano,2021,15(4):6489-6498.
[3] Yu H,Feng Y,Chen C,et al.Highly thermally conductive adhesion elastomer enhanced by vertically aligned folded graphene[J].Advanced Science,2022,9(33):2201331.
[4] Min P,Liu J,Li X,et al.Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion[J].Advanced Functional Materials,2018,28(51):1805365.
[5] Yu X,Li Y,Wang X,et al.Thermolconductive,moisture-permeable,and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics[J].ACS Applied Materials & Interfaces,2020,12(28):32078-32089.
[6] Feng C P,Yang L Y,Yang J,et al.Recent advances in polymer-based thermal interface materials for thermal management:a mini-review[J].Composites Communications,2020,22:100528.
[7] Lin Y,Kang Q,Liu Y,et al.Flexible,highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators[J].Nano-Micro Letters,2023,15(1):31.
[8] An D,Cheng S,Xi S,et al.Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity[J].Chemical Engineering Journal,2020,383:123-151.
[9] Zhang P,Zeng J,Zhai S,et al.Thermal properties of graphene filled polymer composite thermal interface materials[J].Macromolecular Materials and Engineering,2017,302:1700068.
[10] Jiao D,Song N,Ding P,et al.Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering[J].Composites Communications,2022,31:101101.
[11] Zhang F,Feng Y,Feng W.Three-dimensional interconnected networks for thermally conductive polymer composites:design,preparation,properties,and mechanisms[J].Materials Science and Engineering:R:Reports,2020,142:100580.
[12] Zhang P,Zeng J,Zhai S,et al.Thermal properties of graphene filled polymer composite thermal interface materials[J].Macromolecular Materials and Engineering,2017,302(9):1700068.
[13] Anwar Z,Kausar A,Rafique I,et al.Advances in epoxy/graphene nanoplatelet composite with enhanced physical properties:a review[J].Polymer-Plastics Technology and Engineering,2016,55(6):643-662.
[14] Miculescu M,Thakur V K,Miculescu F,et al.Graphene-based polymer nanocomposite membranes:a review[J].Polymers for Advanced Technologies,2016,27(7):844-859.
[15] Bai Y,Shi Y,Zhou S,et al.Highly thermally conductive yet electrically insulative polycarbonate composites with oriented hybrid networks assisted by high shear injection molding[J].Macromolecular Materials and Engineering,2022,307(1):2100632.
[16] Wu X S,Tang W T,Xu X F.Recent progresses of thermal conduction in two-dimensional materials[J].Acta Physica Sinica,2020,69(19):196602-1-196602-33.
[17] Yao W J,Cao B Y.Thermal wave propagation in graphene studied by molecular dynamics simulations[J].Chinese Science Bulletin,2014,59(27):3495-3503.
[18] Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
[19] Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
[20] Renteria J D,Ramirez S,Malekpour H,et al.Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature[J].Advanced Functional Materials,2015,25(29):4664-4672.
[21] Lv L,Dai W,Li A,et al.Graphene-based thermal interface materials:an application-oriented perspective on architecture design[J].Polymers,2018,10(11):1201.
[22] Liang C,Qiu H,Han Y,et al.Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity[J].Journal of Materials Chemistry C,2019,7(9):2725-2733.
[23] Dai W,Lv L,Ma T,et al.Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management[J].Advanced Science,2021,8(7):2003734.
[24] Xu Z,Zhang Y,Li P,et al.Strong,conductive,lightweight,neat graphene aerogel fibers with aligned pores[J].ACS Nano,2012,6(8):7103-7113.
[25] Narayan R,Kim J E,Kim J Y,et al.Graphene oxide liquid crystals:discovery,evolution and applications[J].Advanced Materials,2016,28(16):3045-3068.
[26] Yao B,Chen J,Huang L,et al.Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures[J].Advanced Materials,2016,28(8):1623-1629.
[27] Yang J,Li X,Han S,et al.Air-dried,high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J].Journal of Materials Chemistry A,2016,4(46):18067-18074.
[28] An F,Li X,Min P,et al.Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities[J].ACS Applied Materials & Interfaces,2018,10(20):17383-17392.
[29] Li G,Zhang X,Wang J,et al.From anisotropic graphene aerogels to electron- and photo-driven phase change composites[J].Journal of Materials Chemistry A,2016,4(43):17042-17049.
[30] Huang J,Zhang B,Valdiserri P,et al.Thermal flow self-assembled anisotropic chemically derived graphene aerogels and their thermal conductivity enhancement[J].Nanomaterials,2019,9(9):1226.
[31] Yu Z,Dai T,Yuan S,et al.Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels[J].ACS Applied Materials & Interfaces,2020,12(27):30990-31001.
[32] Liu T,Huang M,Li X,et al.Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J].Carbon,2016,100:456-464.
[33] Zhang P,Li J,Lv L,et al.Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J].ACS Nano,2017,11(5):5087-5093.
[34] Lian G,Tuan C C,Li L,et al.Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading[J].Chemistry of Materials,2016,28(17):6096-6104.
[35] Li Y,Wei W,Wang Y,et al.Construction of highly aligned graphene-based aerogels and their epoxy composites towards high thermal conductivity[J].Journal of Materials Chemistry C,2019,7(38):11783-11789.
[36] Li X H,Liu P,Li X,et al.Vertically aligned,ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites[J].Carbon,2018,140:624-633.
[37] Gao W,Zhao N,Yu T,et al.High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading[J].Carbon,2020,157:570-577.
[38] Bai H,Chen Y,Delattre B,et al.Bioinspired large-scale aligned porous materials assembled with dual temperature gradients[J].Science Advances,1(11):e1500849.
[39] Liu P,Li X,Min P,et al.3D Lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness[J].Nano-Micro Letters,2020,13(1):22.
[40] Wang C,Chen X,Wang B,et al.Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure[J].ACS Nano,2018,12(6):5816-5825.
[41] Lin Y,Kang Q,Wei H,et al.Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management[J].Nano-Micro Letters,2021,13(1):180.
[42] Yang J,Shen X,Yang W,et al.Templating strategies for 3D-structured thermally conductive composites:recent advances and thermal energy applications[J].Progress in Materials Science,2023,133:101054.
[43] Chen Y,Hou X,Liao M,et al.Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite[J].Chemical Engineering Journal,2020,381:122690.
[44] Du X,Zhou M,Deng S,et al.Poly(ethylene glycol)-grafted nanofibrillated cellulose/graphene hybrid aerogels supported phase change composites with superior energy storage capacity and solar-thermal conversion efficiency[J].Cellulose,2020,27(8):4679-4690.
[45] Xue F,Jin X Z,Wang W Y,et al.Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials[J].Nanoscale,2020,12(6):4005-4017.
[46] Kim Y K,Chung J Y,Lee J G,et al.Synergistic effect of spherical Al2O3 particles and BN nanoplates on the thermal transport properties of polymer composites[J].Composites Part A:Applied Science and Manufacturing,2017,98:184-191.
[47] Yang J,Tang L S,Bao R Y,et al.An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light-thermal-electric energy conversion[J].Journal of Materials Chemistry A,2016,4(48):18841-18851.
[48] An F,Li X,Min P,et al.Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites[J].Carbon,2018,126:119-127.
[49] Seyed F A,Mojtaba K.Magnetic filler alignment of single graphene nanoplatelets modified by Fe3O4 to improve the thermal conductivity of the epoxy composite[J].Journal of Industrial and Engineering Chemistry,2023,122:68-78.
[50] Li B,Dong S,Wu X,et al.Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites[J].Composites Science and Technology,2017,147:52-61.
[51] Chung S H,Kim H,Jeong S W.Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment[J].Carbon,2018,140:24-29.
[52] Zhang F,Ren D,Zhang Y,et al.Production of highly-oriented graphite monoliths with high thermal conductivity[J].Chemical Engineering Journal,2022,431:134102.
[53] Wu X,Wang H,Wang Z,et al.Highly conductive thermal interface materials with vertically aligned graphite-nanoplatelet filler towards:high power density electronic device cooling[J].Carbon,2021,182:445-453.
[54] Dai W,Ma T,Yan Q,et al.Metal-level thermally conductive yet soft graphene thermal interface materials[J].ACS Nano,2019,13(10):11561-11571.
Options
文章导航

/