分别以钨酸钠和钛酸四异丙酯为原料,通过溶胶-凝胶法制备了纳米WO3及TiO2胶体,并将两种材料按照一定比例进行复配和煅烧,制备了TiO2与WO3的异质节型光催化材料。循环伏安测试表明制备的材料具有较好的电化学性能。光催化测试表明,TiO2与WO3摩尔比为1∶10的复合材料显示出最好的光催化性能,其对亚甲基蓝的降解率为73.7%,是纯WO3的1.52倍。
This study selected sodium tungstate and tetraisopropyl titanate as raw materials to prepare tungsten trioxide (WO3) and titanium oxide (TiO2) colloids.Heterojunction photocatalytic materials of TiO2 and WO3 were prepared by adapting ratio between TiO2 and WO3 using solid calcination method.Cyclic voltammetry test showed that the prepared materials had excellent electrochemical performance.Photocatalytic results revealed that the composite material with a TiO2 to WO3 molar ratio of 1∶10 exhibited the best photocatalytic performance,achieving a degradation rate of 73.7% for methylene blue,which was 1.52 times higher than that of pure WO3.
[1] 黄世震,林伟.纳米材料WO3-ZnS系H2S气敏元件的研究[J].传感器技术,2001,20(1):21-22.
[2] Fouad N E,Nohman A K H,Zaki M I.Thermoanalytic resolution of hydrogen-influenced reductive events in the decomposition course of ammonium paratungstate[J].Thermochim Acta,1994,239:137-145.
[3] 徐甲强,闫东亮,王国庆,等.WO3基H2S气敏材料的研究[J].硅酸盐学报,1999,27(5):591-595.
[4] Haver P J.Activated WO3 gas detector[J].Applied Physics Letters,1967,11:255-230.
[5] 魏少红.SiO2-WO3纳米材料的固相合成研究[J].新乡师范高等专科学校学报,2002,16(4):23-24.
[6] Matsunawa A,Katayama S.Laser production of ultrafine particles of ceramices and ceramic-metal mixtures[J].Transactions of JWRI,1990,19(1):137-148.
[7] Gunnar A,Josefin K.Polaron absorption in tungsten oxide nanoparticle aggregates electrochimical atca[J].Electrochimica Atca,2001,46:1967-1971.
[8] Li Y B,Bando Y,Golberg D,et al.WO3 nanorods/nanobelts synthesised via physical vapor deposition process[J].Chemical Physics Letters,2003,367:214-218.
[9] 陈国平,黄蕙芬,陈公乃,等.电子束蒸发氧化钨薄膜电致变色性质性能的研究[J].太阳能学报,1995,16(2):150-154.
[10] 方国家,刘祖黎,周远明,等.脉冲准分子激光沉积纳米WO3多晶电致变色薄膜的研究[J].硅酸盐学报,2001,29(6):559-564.
[11] Giulio M Di,Manno D,Micocci G,et al.Sputter deposition of tungsten trioxide for gas sensing applications[J].Journal of Materials Science:Materials in Electronics,1998,9:317-322.
[12] Siciliano T,Tepore A,Micocci G,et al.WO3 gas sensors prepared by thermal oxidization of tungsten[J].Sensors and Actuators B:Chemical,2008,133:321-326.
[13] Tamaki J,Zhang Z,Akiyama M,et al.Grain-size effects in tungsten oxide-based sensor for nitrogen oxide[J].Journal of the Electrochemical Society,1994,141(8):2207-2210.
[14] 全宝富,周生玉,孙良彦.WO3中掺杂及其气敏特性[J].功能材料,1997,28(2):177-181.
[15] Lee Dae-Sik,Han Sang-Do,Huh Jeung-Soo,et al.Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thin films gas sensor[J].Sensors and Actuators B,1999,60:57-63.
[16] 徐英明,程晓丽,高山,等.焦绿石型WO3超细粉体的水热合成与表征[J].哈尔滨理工大学学报,2002,7(6):70-74.
[17] Gerand B,Nowogrocki G,Guenot J,et al.Structural study of a new hexagonal form of tungsten trixide[J].Journal of Solid State Electrochemistry,1979,29(3):429-434.
[18] Yu Aishui,Kumagai Naoaki,Liu Zhaolin,et al.Electrochemical litthium intercalation into WO3 and lithium tungstates LixWO3+x/2 of varijous structures[J].Journal of Solid State Electrochemistry,1998,2:394-400.
[19] Komaba Shinichi,Kumagai Naoaki,Kato Keiko,et al.Hydrothesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide[J].Solod State Ionics,2000,135(1-4):193-197.
[20] Gier T E,Pease D C,Sleight A W.New lithium,ammonium and tin hexagonal tungsten bronzes prepared hydrothermally[J].Inorganic Chemistry,1969,7:394.