[1] Reidy B,Dämmgen U,Döhler H,et al.Comparison of models used for national agricultural ammonia emission inventories in Europe:liquid manure systems[J].Atmospheric Environment,2008,42(14):3452-3464.
[2] 窦应铂,徐莹莹.大气氨气浓度、来源及危害研究进展[J].石化技术,2022,29(5):178-180.
[3] 王均利,曾少娟,陈能,等.氨气吸附材料的研究进展[J].过程工程学报,2019,19(1):14-24.
[4] 杨莹,陈慧宇,李芬,等.废气中高效吸附氨材料研究进展[J].哈尔滨理工大学学报,2024,10(9):1-10.
[5] Monica Chin Ching-Ju,Shih Meiwen,Tsai Hen-Jer.Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes[J].Applied Surface Science,2010,256(20):6035-6039.
[6] Lu J,Nagase S,Maeda Y,et al.Adsorption configuration of NH3 on single-wall carbon nanotubes[J].Chemical Physics Letters,2005,405(1-3):90-92.
[7] Ellison M D,Crotty M J,Koh D,et al.Adsorption of NH3 and NO2 on single-walled carbon nanotubes[J].Journal of Physical Chemistry B,2004,108(23):7938-7943.
[8] Shirvani B B,Beheshtian J,Parsafar G,et al.DFT study of NH3(H2O)n=0,1,2,3 complex adsorption on the (8,0) single-walled carbon nanotube[J].Computational materials science,2010,48(3):655-657.
[9] 常雪.改性石墨烯材料的制备及其对铀的富集研究[D].兰州:兰州大学,2024.
[10] Zhang Z,Zhang X,Luo W,et al.Study on adsorption and desorption of ammonia on graphene[J].Nanoscale Research Letters,2015,10:1-8.
[11] Seredych M,Bandosz T J.Mechanism of ammonia retention on graphite oxides:role of surface chemistry and structure[J].Journal of Physical Chemistry C,2007,111(43):15596-15604.
[12] Mousavi S V,Nabi Bidhendi G,Mehrdadi N.Removal of ammonia from industrial wastewater using novel heterogeneous nanocomposite of nickel,strontium,and zirconia oxides decorated graphene oxide[J].Environmental Progress & Sustainable Energy,2020,39(6):e13444.
[13] 周冬兰,廖丹,张文展,等.金属-有机骨架材料改性研究进展[J].化工新型材料,2023,51(12):27-30,38.
[14] Kajiwara T,Higuchi M,Watanabe D,et al.A systematic study on the stability of porous coordination polymers against ammonia[J].Chemistry-A European Journal,2014,20(47):15611-15617.
[15] Saha D,Deng S.Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177[J].Journal of Colloid and Interface Science,2010,348(2):615-620.
[16] Glover T G,Peterson G W,Schindler B J,et al.MOF-74 building unit has a direct impact on toxic gas adsorption[J].Chemical Engineering Science,2011,66(2):163-170.
[17] Chen Y,Du Y,Liu P,et al.Removal of ammonia emissions via reversible structural transformation in M(BDC)(M=Cu,Zn,Cd) metal-organic frameworks[J].Environmental Science & Technology,2020,54(6):3636-3642.
[18] Katz M J,Howarth A J,Moghadam P Z,et al.High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27[J].Dalton Transactions,2016,45(10):4150-4153.
[19] Chen R,Liu J.Competitive coadsorption of ammonia with water and sulfur dioxide on metal-organic frameworks at low pressure[J].Building and Environment,2022,207:108421.
[20] Jasuja H,Peterson G W,Decoste J B,et al.Evaluation of MOFs for air purification and air quality control applications:ammonia removal from air[J].Chemical Engineering Science,2015,124:118-124.
[21] Joshi J N,Garcia-Gutierrez E Y,Moran C M,et al.Engineering copper carboxylate functionalities on water stable metal-organic frameworks for enhancement of ammonia removal capacities[J].The Journal of Physical Chemistry C,2017,121(6):3310-3319.
[22] Binaeian E,Li Y,Yuan D.Improving ammonia uptake performance of zirconium-based metal-organic frameworks through open metal site insertion strategy[J].Chemical Engineering Journal,2021,421:129655.
[23] Hindocha S,Poulston S.Study of the scale-up,formulation,ageing and ammonia adsorption capacity of MIL-100(Fe),Cu-BTC and CPO-27(Ni) for use in respiratory protection filters[J].Faraday Discussions,2017,201:113-125.
[24] Yuan Y,Wu G,Li W,et al.In situ growth of MIL-100(Fe) onto the rice straw-derived biochar for efficient adsorption of gaseous ammonia[J].Separation and Purification Technology,2024,342:127034.
[25] 王孟锦,王洒,任红霞,等.共价有机框架材料:一类新兴的均孔吸附分离树脂[J].科学通报,2024,69(16):2233-2245.
[26] Yang Y,Faheem M,Wang L,et al.Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches[J].ACS Central Science,2018,4(6):748-754.
[27] Tian X,Qiu J,Wang Z,et al.A record ammonia adsorption by calcium chloride confined in covalent organic frameworks[J].Chemical Communications,2022,58(8):1151-1154.
[28] Li J,Xiao Y,Shui F,et al.Extremely stable sulfuric acid covalent organic framework for highly effective ammonia capture[J].Chinese Journal of Chemistry,2022,40(20):2445-2450.
[29] Li G,Zhou Q,Zhang X,et al.Solubilities of ammonia in basic imidazolium ionic liquids[J].Fluid Phase Equilibria,2010,297(1):34-39.
[30] Li Z,Zhang X,Dong H,et al.Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids[J].RSC Advances,2015,5(99):81362-81370.
[31] Han G,Liu C,Yang Q,et al.Construction of stable IL@MOF composite with multiple adsorption sites for efficient ammonia capture from dry and humid conditions[J].Chemical Engineering Journal,2020,401:126106.
[32] Li Z,Chen Y,Wang Z,et al.Ionic liquid hybrid metal-organic frameworks for efficient adsorption and selective separation of ammonia at high temperature[J].Chemical Engineering Journal,2023,464:142728.
[33] Hou Y C,Yao C F,Wu W Z.Deep eutectic solvents:green solvents for separation applications[J].Acta Physico-Chimica Sinica,2018,34(8):873-885.
[34] Li Y,Ali M C,Yang Q,et al.Hybrid deep eutectic solvents with flexible hydrogen-bonded supramolecular networks for highly efficient uptake of NH3[J].ChemSusChem,2017,10(17):3368-3377.
[35] Zhong F Y,Peng H L,Tao D J,et al.Phenol-based ternary deep eutectic solvents for highly efficient and reversible absorption of NH3[J].ACS Sustainable Chemistry & Engineering,2019,7(3):3258-3266.
[36] Zhang J Y,Huang K.Densities and viscosities of,and NH3 solubilities in deep eutectic solvents composed of ethylamine hydrochloride and acetamide[J].Journal of Chemical Thermodynamics,2019,139:105883.
[37] Luo Q,Hao J,Wei L,et al.Protic ethanolamine hydrochloride-based deep eutectic solvents for highly efficient and reversible absorption of NH3[J].Separation and Purification Technology,2021,260:118240.
[38] Kim J H,Kang D W,Yun H,et al.Post-synthetic modifications in porous organic polymers for biomedical and related applications[J].Chemical Society Reviews,2022,51(1):43-56.
[39] Zhang J,Ma Y,Wu W,et al.Carboxylic functionalized mesoporous polymers for fast,highly efficient,selective and reversible adsorption of ammonia[J].Chemical Engineering Journal,2022,448:137640.
[40] Han Z,Mao Y,Pang X,et al.Structure and functional group regulation of plastics for efficient ammonia capture[J].Journal of Hazardous Materials,2022,440:129789.
[41] Kan X,Liu Z,Liu F,et al.Sulfonated and ordered mesoporous polymers for reversible adsorption of ammonia:elucidation of sequential pore-space diffusion[J].Chemical Engineering Journal,2023,451:139085.
[42] Liu C Y,Aika K.Ammonia absorption on alkaline earth halides as ammonia separation and storage procedure[J].Bulletin of the Chemical Society of Japan,2004,77(1):123-131.
[43] Ji Y R,Guo Y F,Liu X,et al.Insights on rational design and regulation strategies of Prussian blue analogues and their derivatives towards high-performance electrocatalysts[J].Chemical Engineering Journal,2023:144743.
[44] Takahashi A,Tanaka H,Parajuli D,et al.Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds[J].Journal of the American Chemical Society,2016,138(20):6376-6379.
[45] Xiao J,Zhang Y,Zhang T C,et al.Prussian blue-impregnated waste pomelo peels-derived biochar for enhanced adsorption of NH3[J].Journal of Cleaner Production,2023,382:135393.