开发与应用

基于吩嗪基团修饰的Al-MOF材料吸附亚甲基蓝及性能

展开
  • 河北工业大学化工学院,天津 300401
师艺颖(2000-),女,硕士研究生,主要从事MOF材料的设计合成及性能研究工作,E-mail:2506605845@qq.com。
段中余(1971-),女,教授,从事超分子化学和催化化学研究工作,E-mail:zyduan@hebut.edu.cn。

收稿日期: 2023-09-26

  修回日期: 2024-06-12

  网络出版日期: 2024-11-19

基金资助

河北省自然科学基金项目(E2022202015)

Adsorption and properties of methylene blue by Al-MOF materials modified with phenazine groups

Expand
  • School of Chemical Engineering & Technology, Hebei University of Technology, Tianjin 300401

Received date: 2023-09-26

  Revised date: 2024-06-12

  Online published: 2024-11-19

摘要

传统NH2-MIL-101(Al)材料由于可循环性能差,难以高效吸附有机染料。利用2,3-二氨基吩嗪与2,4-二甲基-5-醛基-1H-吡咯-3-羧酸的反应产物,对NH2-MIL-101(Al)材料进行后修饰,制备得到了1-MOF材料。该材料尤其可用于有机染料亚甲基蓝(MB)的吸附,最大吸附量高达146.82mg/g。最佳吸附溶液为中性,对共存的离子具有抗干扰性,循环5次后依然具有高于80%的去除率,显著提高了传统NH2-MIL-101(Al)材料的循环利用性。动力学模型和热力学模型证实该吸附过程更符合准二级动力学模型和Langmuir等温线模型。

本文引用格式

师艺颖, 舒燕, 段中余 . 基于吩嗪基团修饰的Al-MOF材料吸附亚甲基蓝及性能[J]. 化工新型材料, 2024 , 52(11) : 264 -269 . DOI: 10.19817/j.cnki.issn1006-3536.2024.11.030

Abstract

Traditional NH2-MIL-101(Al) material is difficult to adsorb organic dyes efficiently because of its poor recyclability.Using the reaction product of 2,3-diaminophenazine and 2,4-dimethyl-5-aldehyde-1H-pyrrole-3-carboxylic acid,NH2-MIL-101(Al) material was post-modified to prepare 1-MOF material.This material could be especially suitable for the adsorption of organic dye methylene blue (MB),with the maximum adsorption capacity as high as 146.82mg/g.The optimal adsorption solution was neutral,and the adsorption process had anti-interference to co-existing ions.Moreover,it still had a removal rate of more than 80% after 5 cycles,which significantly improved the recyclability of traditional NH2-MIL-101(Al) materials.The kinetic and thermodynamic experiments confirmed that the adsorption process was more in line with the quasi-second-order kinetic model and Langmuir isotherm model.

参考文献

[1] Cheng H B,Li Y Y,Tang B Z,et al.Assembly strategies of organic-based imaging agents for fluorescence and photoacoustic bioimaging applications[J].Chemical Society Reviews,2020,49(1):21-31.
[2] Tkaczyk A,Mitrowska K,Posyniak A.Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems:a review[J].Science of the Total Environment,2020,717:137222.
[3] Manna S,Roy D,Saha P,et al.Rapid methylene blue adsorption using modified lignocellulosic materials[J].Science of the Total Environment,2017,107:346-356.
[4] Juraij K,Suni V,Sujith A.Efficient selective methylene blue adsorption by polyurethane/montmorillonite-based antifouling electrospun composite membranes[J].Journal of Applied Polymer Science,2023,140(10):e53464.
[5] Leidy D A,Raúl A P,Aura M P,et al.A brief history of colour,the environmental impact of synthetic dyes and removal by using laccases[J].Molecules,2021,26(13):3813-3853.
[6] Liu C,Omer A M,Ouyang X K.Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads:isotherm and kinetic studies[J].International Journal of Biological Macromolecules,2018,106:823-833.
[7] Mridusmita G,Prodeep P.Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon[J].Journal of Environmental Chemical Engineering,2017,5(4):3508-3517.
[8] Rachuri Y,Subhagan S,Parmar B,et al.Selective and reversible adsorption of cationic dyes by mixed ligand Zn(Ⅱ) coordination polymers synthesized by reactant ratio modulation[J].Dalton Transactions,2018,47(3):898-908.
[9] Ghaffar A,Zhang L,Zhu X,et al.Porous PVDF/GO nanofibrous membranes for selective separation and recycling of charged organic dyes from water[J].Environmental Science & Technology,2018,52(7):4265-4274.
[10] Song Y H,Xu Q T,He T,et al.Efficient biodegradation of azo dyes catalyzed by the anthraquinone-2-sulfonate and reduced graphene oxide nanocomposite[J].ACS Omega,2020,5(33):21137-21144.
[11] Moosavi S,Lai C W,Gan S,et al.Application of efficient magnetic particles and activated carbon for dye removal from wastewater[J].ACS Omega,2020,5(33):20684-20697.
[12] Shattar S F A,Foo K Y.Sodium salt-assisted low temperature activation of bentonite for the adsorptive removal of methylene blue[J].Scientific Reports,2022,12(1):2534-2545.
[13] Rakass S,Hassani H O,Mohmoud A,et al.Highly efficient methylene blue dye removal by nickel molybdate nanosorbent[J].Molecules,2021,26(5):1378-1397.
[14] Enamul H,Victor L,Andrew I,et al.Dichotomous adsorption behaviour of dyes on an amino-functionalised metal-organic framework,amino-MIL-101(Al)[J].Journal of Materials Chemistry A,2014,2(1):193-203.
[15] Sun Z,Srinivasakannan C,Liang J,et al.Preparation of hierarchical magnesium silicate with excellent adsorption capacity[J].Ceramics International,2018,45(4):4590-4595.
[16] Li L,Liu L X,Geng Y H.A MOF/graphite oxide hybrid (MOF:HKUST-1) material for the adsorption of methylene blue from aqueous solution[J].Journal of Materials Chemistry A,2013,1(35):10292-10299.
[17] Niu S Y,Fang Y J,Zhang K,et al.Determination of dopamine using the fluorescence quenching of 2,3-diaminophenazine[J].Instrumentation Science & Technology,2017,45(1):101-110.
[18] 温雨晴.基于金属有机框架的探针制备及其性能研究[D].天津:河北工业大学,2021.
[19] Shu Y,Xin C Y,Hai M Y,et al.Fluorescent material based on Al-MOF and phenazine groups for detection of water content in organic solvents[J].Functional Materials Letters,2023,16(2):2350012.
[20] Chen P,Cao Z F,Wen X,et al.In situ nano-silicate functionalized graphene oxide composites to improve MB removal[J].Journal of the Taiwan Institute of Chemical Engineers,2017,81(1):87-94.
[21] Fan S S,Wang Y,Wang Z,et al.Removal of methylene blue from aqueous solution by sewage sludge-derived biochar:adsorption kinetics,equilibrium,thermodynamics and mechanism-ScienceDirect[J].Journal of Environmental Chemical Engineering,2017,5(1):601-611.
[22] Liu F,Teng S,Song R,et al.Adsorption of methylene blue on anaerobic granular sludge:effect of functional groups[J].Desalination,2010,263(1):11-17.
Options
文章导航

/